diff --git a/project/graphql/biolink_model.graphql b/project/graphql/biolink_model.graphql index e115750d4..6f8171de2 100644 --- a/project/graphql/biolink_model.graphql +++ b/project/graphql/biolink_model.graphql @@ -228,9 +228,9 @@ type Article keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! publishedIn: Uriorcurie! isoAbbreviation: String volume: String @@ -370,8 +370,11 @@ type BehaviorToBehavioralFeatureAssociation implements EntityToPhenotypicFeature subject: Behavior! object: BehavioralFeature! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -540,8 +543,8 @@ type Book keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] - name: LabelType publicationType: [String]! + name: LabelType id: String! type: [String] } @@ -567,9 +570,9 @@ type BookChapter keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! publishedIn: Uriorcurie! volume: String chapter: String @@ -596,6 +599,8 @@ type Case implements SubjectOfInvestigation interface CaseToEntityAssociationMixin { subject: Case! + predicate: PredicateType! + object: NamedThing! } type CaseToPhenotypicFeatureAssociation implements EntityToPhenotypicFeatureAssociationMixin, CaseToEntityAssociationMixin @@ -635,8 +640,11 @@ type CaseToPhenotypicFeatureAssociation implements EntityToPhenotypicFeatureAsso type: [String] category: [CategoryType] frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -681,8 +689,9 @@ type CausalGeneToDiseaseAssociation implements EntityToDiseaseAssociationMixin, objectDirectionQualifier: DirectionQualifierEnum predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -765,8 +774,11 @@ type CellLineAsAModelOfDiseaseAssociation implements ModelToDiseaseAssociationMi category: [CategoryType] subject: CellLine! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String } type CellLineToDiseaseOrPhenotypicFeatureAssociation implements CellLineToEntityAssociationMixin, EntityToDiseaseOrPhenotypicFeatureAssociationMixin @@ -810,6 +822,8 @@ type CellLineToDiseaseOrPhenotypicFeatureAssociation implements CellLineToEntity interface CellLineToEntityAssociationMixin { subject: CellLine! + predicate: PredicateType! + object: NamedThing! } type CellularComponent @@ -891,14 +905,14 @@ type ChemicalAffectsGeneAssociation objectPartQualifier: GeneOrGeneProductOrChemicalPartQualifierEnum objectAspectQualifier: GeneOrGeneProductOrChemicalEntityAspectEnum objectContextQualifier: AnatomicalEntity + objectDirectionQualifier: DirectionQualifierEnum causalMechanismQualifier: CausalMechanismQualifierEnum anatomicalContextQualifier: AnatomicalEntity qualifiedPredicate: String + speciesContextQualifier: OrganismTaxon subject: ChemicalEntity! predicate: PredicateType! object: GeneOrGeneProduct! - objectDirectionQualifier: DirectionQualifierEnum - speciesContextQualifier: OrganismTaxon } type ChemicalEntity implements PhysicalEssence, ChemicalOrDrugOrTreatment, ChemicalEntityOrGeneOrGeneProduct, ChemicalEntityOrProteinOrPolypeptide @@ -1010,6 +1024,8 @@ interface ChemicalEntityOrProteinOrPolypeptide interface ChemicalEntityToEntityAssociationMixin { subject: ChemicalEntityOrGeneOrGeneProduct! + predicate: PredicateType! + object: NamedThing! } type ChemicalExposure implements ExposureEvent @@ -1212,8 +1228,6 @@ type ChemicalToChemicalAssociation implements ChemicalToEntityAssociationMixin description: NarrativeText hasAttribute: [Attribute] deprecated: Boolean - subject: NamedThing! - predicate: PredicateType! negated: Boolean qualifier: String qualifiers: [OntologyClass] @@ -1239,6 +1253,8 @@ type ChemicalToChemicalAssociation implements ChemicalToEntityAssociationMixin retrievalSourceIds: [RetrievalSource] type: [String] category: [CategoryType] + subject: NamedThing! + predicate: PredicateType! object: ChemicalEntity! } @@ -1321,7 +1337,9 @@ type ChemicalToDiseaseOrPhenotypicFeatureAssociation implements ChemicalToEntity interface ChemicalToEntityAssociationMixin { - subject: ChemicalEntityOrGeneOrGeneProduct! + subject: NamedThing! + predicate: PredicateType! + object: NamedThing! } type ChemicalToPathwayAssociation implements ChemicalToEntityAssociationMixin @@ -1740,8 +1758,9 @@ type CorrelatedGeneToDiseaseAssociation implements EntityToDiseaseAssociationMix objectDirectionQualifier: DirectionQualifierEnum predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -1932,6 +1951,8 @@ type DiseaseOrPhenotypicFeatureOutcome implements Outcome interface DiseaseOrPhenotypicFeatureToEntityAssociationMixin { subject: DiseaseOrPhenotypicFeature! + predicate: PredicateType! + object: NamedThing! } type DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation implements DiseaseOrPhenotypicFeatureToEntityAssociationMixin @@ -2013,6 +2034,8 @@ type DiseaseOrPhenotypicFeatureToLocationAssociation implements DiseaseOrPhenoty interface DiseaseToEntityAssociationMixin { subject: Disease! + predicate: PredicateType! + object: NamedThing! } type DiseaseToExposureEventAssociation implements DiseaseToEntityAssociationMixin, EntityToExposureEventAssociationMixin @@ -2090,8 +2113,11 @@ type DiseaseToPhenotypicFeatureAssociation implements EntityToPhenotypicFeatureA subject: Disease! object: PhenotypicFeature! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -2165,14 +2191,16 @@ type DrugLabel keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! } interface DrugToEntityAssociationMixin { - subject: Drug! + subject: NamedThing! + predicate: PredicateType! + object: NamedThing! } type DrugToGeneAssociation implements DrugToEntityAssociationMixin @@ -2269,8 +2297,9 @@ type DruggableGeneToDiseaseAssociation implements EntityToDiseaseAssociationMixi subjectAspectQualifier: GeneOrGeneProductOrChemicalEntityAspectEnum objectDirectionQualifier: DirectionQualifierEnum frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -2337,30 +2366,47 @@ type EntityToDiseaseAssociation interface EntityToDiseaseAssociationMixin { frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subject: NamedThing! + predicate: PredicateType! + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String object: Disease! } interface EntityToDiseaseOrPhenotypicFeatureAssociationMixin { + subject: NamedThing! + predicate: PredicateType! object: DiseaseOrPhenotypicFeature! } interface EntityToExposureEventAssociationMixin { + subject: NamedThing! + predicate: PredicateType! object: ExposureEvent! } interface EntityToFeatureOrDiseaseQualifiersMixin { frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subject: NamedThing! + predicate: PredicateType! + object: NamedThing! + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String } interface EntityToOutcomeAssociationMixin { + subject: NamedThing! + predicate: PredicateType! object: Outcome! } @@ -2407,10 +2453,15 @@ type EntityToPhenotypicFeatureAssociation type EntityToPhenotypicFeatureAssociationMixin implements FrequencyQuantifier { frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset - sexQualifier: BiologicalSex + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String + subject: NamedThing! + predicate: PredicateType! object: PhenotypicFeature! + sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer hasQuotient: Double @@ -2674,8 +2725,11 @@ type ExposureEventToPhenotypicFeatureAssociation implements EntityToPhenotypicFe category: [CategoryType] subject: ExposureEvent! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -2686,8 +2740,14 @@ type ExposureEventToPhenotypicFeatureAssociation implements EntityToPhenotypicFe interface FeatureOrDiseaseQualifiersToEntityMixin { frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subject: NamedThing! + predicate: PredicateType! + object: NamedThing! + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String } type Food @@ -2739,6 +2799,9 @@ type FoodAdditive interface FrequencyQualifierMixin { frequencyQualifier: FrequencyValue + subject: NamedThing! + predicate: PredicateType! + object: NamedThing! } interface FrequencyQuantifier @@ -2868,15 +2931,15 @@ type GeneAffectsChemicalAssociation objectPartQualifier: GeneOrGeneProductOrChemicalPartQualifierEnum objectAspectQualifier: GeneOrGeneProductOrChemicalEntityAspectEnum objectContextQualifier: AnatomicalEntity + objectDirectionQualifier: DirectionQualifierEnum + objectDerivativeQualifier: ChemicalEntityDerivativeEnum causalMechanismQualifier: CausalMechanismQualifierEnum anatomicalContextQualifier: AnatomicalEntity qualifiedPredicate: String + speciesContextQualifier: OrganismTaxon subject: GeneOrGeneProduct! predicate: PredicateType! object: ChemicalEntity! - objectDerivativeQualifier: ChemicalEntityDerivativeEnum - objectDirectionQualifier: DirectionQualifierEnum - speciesContextQualifier: OrganismTaxon } type GeneAsAModelOfDiseaseAssociation implements ModelToDiseaseAssociationMixin, EntityToDiseaseAssociationMixin @@ -2916,8 +2979,9 @@ type GeneAsAModelOfDiseaseAssociation implements ModelToDiseaseAssociationMixin, objectDirectionQualifier: DirectionQualifierEnum predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -2995,8 +3059,9 @@ type GeneHasVariantThatContributesToDiseaseAssociation subjectAspectQualifier: GeneOrGeneProductOrChemicalEntityAspectEnum objectDirectionQualifier: DirectionQualifierEnum frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -3064,8 +3129,9 @@ type GeneToDiseaseAssociation implements EntityToDiseaseAssociationMixin, GeneTo objectDirectionQualifier: DirectionQualifierEnum predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -3114,8 +3180,9 @@ type GeneToDiseaseOrPhenotypicFeatureAssociation implements EntityToPhenotypicFe object: DiseaseOrPhenotypicFeature! predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -3126,6 +3193,8 @@ type GeneToDiseaseOrPhenotypicFeatureAssociation implements EntityToPhenotypicFe interface GeneToEntityAssociationMixin { subject: GeneOrGeneProduct! + predicate: PredicateType! + object: NamedThing! } type GeneToExpressionSiteAssociation @@ -3475,8 +3544,9 @@ type GeneToPhenotypicFeatureAssociation implements EntityToPhenotypicFeatureAsso objectDirectionQualifier: DirectionQualifierEnum predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -3651,8 +3721,11 @@ type GenotypeAsAModelOfDiseaseAssociation implements ModelToDiseaseAssociationMi predicate: PredicateType! object: NamedThing! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String subject: Genotype! } @@ -3693,13 +3766,18 @@ type GenotypeToDiseaseAssociation implements GenotypeToEntityAssociationMixin, E predicate: PredicateType! object: NamedThing! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String } interface GenotypeToEntityAssociationMixin { subject: Genotype! + predicate: PredicateType! + object: NamedThing! } type GenotypeToGeneAssociation @@ -3815,8 +3893,11 @@ type GenotypeToPhenotypicFeatureAssociation implements EntityToPhenotypicFeature predicate: PredicateType! subject: Genotype! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -4128,9 +4209,9 @@ type JournalArticle keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! publishedIn: Uriorcurie! isoAbbreviation: String volume: String @@ -4277,6 +4358,8 @@ type MacromolecularMachineToCellularComponentAssociation implements Macromolecul interface MacromolecularMachineToEntityAssociationMixin { subject: NamedThing! + predicate: PredicateType! + object: NamedThing! } type MacromolecularMachineToMolecularActivityAssociation implements MacromolecularMachineToEntityAssociationMixin @@ -4390,8 +4473,8 @@ type MaterialSampleDerivationAssociation type: [String] category: [CategoryType] subject: MaterialSample! - object: NamedThing! predicate: PredicateType! + object: NamedThing! } type MaterialSampleToDiseaseOrPhenotypicFeatureAssociation implements MaterialSampleToEntityAssociationMixin, EntityToDiseaseOrPhenotypicFeatureAssociationMixin @@ -4435,6 +4518,8 @@ type MaterialSampleToDiseaseOrPhenotypicFeatureAssociation implements MaterialSa interface MaterialSampleToEntityAssociationMixin { subject: MaterialSample! + predicate: PredicateType! + object: NamedThing! } type MicroRNA @@ -4459,6 +4544,7 @@ interface ModelToDiseaseAssociationMixin { subject: NamedThing! predicate: PredicateType! + object: NamedThing! } type MolecularActivity implements Occurrent, OntologyClass @@ -4671,8 +4757,6 @@ type NamedThingAssociatedWithLikelihoodOfNamedThingAssociation description: NarrativeText hasAttribute: [Attribute] deprecated: Boolean - subject: NamedThing! - object: NamedThing! negated: Boolean qualifier: String qualifiers: [OntologyClass] @@ -4698,11 +4782,14 @@ type NamedThingAssociatedWithLikelihoodOfNamedThingAssociation retrievalSourceIds: [RetrievalSource] type: [String] category: [CategoryType] - predicate: PredicateType! + subject: NamedThing! subjectAspectQualifier: String subjectContextQualifier: OntologyClass + predicate: PredicateType! + object: NamedThing! objectAspectQualifier: String objectContextQualifier: OntologyClass + populationContextQualifier: PopulationOfIndividualOrganisms } type NoncodingRNAProduct @@ -4872,6 +4959,8 @@ type OrganismTaxon interface OrganismTaxonToEntityAssociation { subject: OrganismTaxon! + predicate: PredicateType! + object: NamedThing! } type OrganismTaxonToEnvironmentAssociation implements OrganismTaxonToEntityAssociation @@ -5120,8 +5209,11 @@ type OrganismalEntityAsAModelOfDiseaseAssociation implements ModelToDiseaseAssoc category: [CategoryType] subject: OrganismalEntity! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String } interface Outcome @@ -5226,9 +5318,9 @@ type Patent keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! } interface PathognomonicityQuantifier @@ -5418,8 +5510,11 @@ type PhenotypicFeatureToDiseaseAssociation implements EntityToDiseaseAssociation category: [CategoryType] predicate: PredicateType! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -5430,8 +5525,13 @@ type PhenotypicFeatureToDiseaseAssociation implements EntityToDiseaseAssociation type PhenotypicFeatureToEntityAssociationMixin implements FrequencyQuantifier { frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + predicate: PredicateType! + object: NamedThing! + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex subject: PhenotypicFeature! hasCount: Integer @@ -5695,9 +5795,9 @@ type PreprintPublication keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! } type Procedure implements ActivityAndBehavior @@ -5836,9 +5936,9 @@ type Publication keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! } type QuantityValue @@ -5855,7 +5955,6 @@ type ReactionToCatalystAssociation description: NarrativeText hasAttribute: [Attribute] deprecated: Boolean - predicate: PredicateType! negated: Boolean qualifier: String qualifiers: [OntologyClass] @@ -5881,6 +5980,7 @@ type ReactionToCatalystAssociation retrievalSourceIds: [RetrievalSource] type: [String] category: [CategoryType] + predicate: PredicateType! stoichiometry: Integer reactionDirection: ReactionDirectionEnum reactionSide: ReactionSideEnum @@ -5896,7 +5996,6 @@ type ReactionToParticipantAssociation description: NarrativeText hasAttribute: [Attribute] deprecated: Boolean - predicate: PredicateType! negated: Boolean qualifier: String qualifiers: [OntologyClass] @@ -5922,6 +6021,7 @@ type ReactionToParticipantAssociation retrievalSourceIds: [RetrievalSource] type: [String] category: [CategoryType] + predicate: PredicateType! object: ChemicalEntity! stoichiometry: Integer reactionDirection: ReactionDirectionEnum @@ -6213,8 +6313,8 @@ type Serial keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] - name: LabelType publicationType: [String]! + name: LabelType isoAbbreviation: String volume: String issue: String @@ -6626,8 +6726,11 @@ type VariantAsAModelOfDiseaseAssociation implements ModelToDiseaseAssociationMix predicate: PredicateType! object: NamedThing! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String subject: SequenceVariant! } @@ -6668,13 +6771,18 @@ type VariantToDiseaseAssociation implements VariantToEntityAssociationMixin, Ent predicate: PredicateType! object: NamedThing! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String } interface VariantToEntityAssociationMixin { subject: SequenceVariant! + predicate: PredicateType! + object: NamedThing! } type VariantToGeneAssociation implements VariantToEntityAssociationMixin @@ -6794,8 +6902,11 @@ type VariantToPhenotypicFeatureAssociation implements VariantToEntityAssociation category: [CategoryType] subject: SequenceVariant! frequencyQualifier: FrequencyValue - severityQualifier: SeverityValue - onsetQualifier: Onset + subjectAspectQualifier: String + subjectDirectionQualifier: DirectionQualifierEnum + objectAspectQualifier: String + objectDirectionQualifier: DirectionQualifierEnum + qualifiedPredicate: String sexQualifier: BiologicalSex hasCount: Integer hasTotal: Integer @@ -6903,9 +7014,9 @@ type WebPage keywords: [String] meshTerms: [Uriorcurie] xref: [Uriorcurie] + publicationType: [String]! id: String! name: LabelType - publicationType: [String]! } type Zygosity diff --git a/project/jsonld/biolink_model.context.jsonld b/project/jsonld/biolink_model.context.jsonld index 61260dbcd..07eac0659 100644 --- a/project/jsonld/biolink_model.context.jsonld +++ b/project/jsonld/biolink_model.context.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2024-01-05T20:27:18", + "generation_date": "2024-01-09T01:11:46", "source": "biolink_model.yaml" }, "@context": { diff --git a/project/jsonld/biolink_model.jsonld b/project/jsonld/biolink_model.jsonld index a3f815a65..84d00a617 100644 --- a/project/jsonld/biolink_model.jsonld +++ b/project/jsonld/biolink_model.jsonld @@ -2127,6 +2127,10 @@ ], "slot_uri": "http://purl.org/dc/terms/type", "multivalued": true, + "owner": "Publication", + "domain_of": [ + "Publication" + ], "range": "string", "@type": "SlotDefinition" }, @@ -2422,7 +2426,7 @@ { "name": "support_graphs", "definition_uri": "https://w3id.org/biolink/vocab/support_graphs", - "description": "A list of knowledge graphs that support the existence of this node.", + "description": "A list of knowledge graphs that support the existence of this association.", "in_subset": [ "translator_minimal" ], @@ -2766,7 +2770,10 @@ "is_a": "node_property", "domain": "NamedThing", "slot_uri": "https://w3id.org/biolink/vocab/has_taxonomic_rank", - "owner": "has_taxonomic_rank", + "owner": "OrganismTaxon", + "domain_of": [ + "OrganismTaxon" + ], "range": "TaxonomicRank", "@type": "SlotDefinition" }, @@ -3426,6 +3433,7 @@ "slot_uri": "https://w3id.org/biolink/vocab/population_context_qualifier", "owner": "ExposureEventToOutcomeAssociation", "domain_of": [ + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", "ExposureEventToOutcomeAssociation" ], "range": "PopulationOfIndividualOrganisms", @@ -3887,6 +3895,25 @@ { "name": "subject_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -3897,8 +3924,11 @@ "owner": "GeneToDiseaseOrPhenotypicFeatureAssociation", "domain_of": [ "PredicateMapping", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", "ChemicalAffectsGeneAssociation", "GeneAffectsChemicalAssociation", + "EntityToFeatureOrDiseaseQualifiersMixin", + "FeatureOrDiseaseQualifiersToEntityMixin", "GeneToDiseaseOrPhenotypicFeatureAssociation" ], "range": "string", @@ -3907,6 +3937,29 @@ { "name": "subject_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -3928,6 +3981,7 @@ { "name": "subject_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -3948,6 +4002,13 @@ { "name": "subject_derivative_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_derivative_qualifier", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement).", + "examples": [ + { + "value": "metabolite", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -3978,6 +4039,7 @@ "owner": "GeneAffectsChemicalAssociation", "domain_of": [ "PredicateMapping", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", "ChemicalGeneInteractionAssociation", "ChemicalAffectsGeneAssociation", "GeneAffectsChemicalAssociation" @@ -3988,6 +4050,7 @@ { "name": "subject_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -3995,11 +4058,13 @@ "is_a": "direction_qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/subject_direction_qualifier", - "owner": "GeneAffectsChemicalAssociation", + "owner": "FeatureOrDiseaseQualifiersToEntityMixin", "domain_of": [ "PredicateMapping", "ChemicalAffectsGeneAssociation", - "GeneAffectsChemicalAssociation" + "GeneAffectsChemicalAssociation", + "EntityToFeatureOrDiseaseQualifiersMixin", + "FeatureOrDiseaseQualifiersToEntityMixin" ], "range": "DirectionQualifierEnum", "@type": "SlotDefinition" @@ -4007,6 +4072,25 @@ { "name": "object_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -4014,11 +4098,14 @@ "is_a": "aspect_qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/object_aspect_qualifier", - "owner": "GeneAffectsChemicalAssociation", + "owner": "FeatureOrDiseaseQualifiersToEntityMixin", "domain_of": [ "PredicateMapping", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", "ChemicalAffectsGeneAssociation", - "GeneAffectsChemicalAssociation" + "GeneAffectsChemicalAssociation", + "EntityToFeatureOrDiseaseQualifiersMixin", + "FeatureOrDiseaseQualifiersToEntityMixin" ], "range": "string", "@type": "SlotDefinition" @@ -4026,6 +4113,29 @@ { "name": "object_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -4046,6 +4156,7 @@ { "name": "object_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -4066,6 +4177,13 @@ { "name": "object_derivative_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_derivative_qualifier", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the object of an association (or statement).", + "examples": [ + { + "value": "metabolite", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -4073,9 +4191,10 @@ "is_a": "derivative_qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/object_derivative_qualifier", - "owner": "PredicateMapping", + "owner": "GeneAffectsChemicalAssociation", "domain_of": [ - "PredicateMapping" + "PredicateMapping", + "GeneAffectsChemicalAssociation" ], "range": "string", "@type": "SlotDefinition" @@ -4093,6 +4212,7 @@ "owner": "GeneAffectsChemicalAssociation", "domain_of": [ "PredicateMapping", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", "ChemicalGeneInteractionAssociation", "ChemicalAffectsGeneAssociation", "GeneAffectsChemicalAssociation" @@ -4103,6 +4223,7 @@ { "name": "object_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -4113,6 +4234,10 @@ "owner": "ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation", "domain_of": [ "PredicateMapping", + "ChemicalAffectsGeneAssociation", + "GeneAffectsChemicalAssociation", + "EntityToFeatureOrDiseaseQualifiersMixin", + "FeatureOrDiseaseQualifiersToEntityMixin", "GeneToDiseaseOrPhenotypicFeatureAssociation", "ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation" ], @@ -4130,11 +4255,13 @@ "is_a": "qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/qualified_predicate", - "owner": "GeneAffectsChemicalAssociation", + "owner": "FeatureOrDiseaseQualifiersToEntityMixin", "domain_of": [ "PredicateMapping", "ChemicalAffectsGeneAssociation", - "GeneAffectsChemicalAssociation" + "GeneAffectsChemicalAssociation", + "EntityToFeatureOrDiseaseQualifiersMixin", + "FeatureOrDiseaseQualifiersToEntityMixin" ], "range": "string", "@type": "SlotDefinition" @@ -4142,7 +4269,7 @@ { "name": "statement_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/statement_qualifier", - "description": "", + "description": "A property that qualifies the entirety of the statement made in an association. It applies to both a fully qualified subject and a fully qualified object as well as the predicate and qualified predicate in an association.", "in_subset": [ "translator_minimal" ], @@ -4232,9 +4359,11 @@ "is_a": "statement_qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/species_context_qualifier", - "owner": "PredicateMapping", + "owner": "GeneAffectsChemicalAssociation", "domain_of": [ - "PredicateMapping" + "PredicateMapping", + "ChemicalAffectsGeneAssociation", + "GeneAffectsChemicalAssociation" ], "range": "OrganismTaxon", "@type": "SlotDefinition" @@ -4293,11 +4422,7 @@ "is_a": "qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/severity_qualifier", - "owner": "FeatureOrDiseaseQualifiersToEntityMixin", - "domain_of": [ - "EntityToFeatureOrDiseaseQualifiersMixin", - "FeatureOrDiseaseQualifiersToEntityMixin" - ], + "owner": "severity_qualifier", "range": "SeverityValue", "@type": "SlotDefinition" }, @@ -4332,11 +4457,7 @@ "is_a": "qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/onset_qualifier", - "owner": "FeatureOrDiseaseQualifiersToEntityMixin", - "domain_of": [ - "EntityToFeatureOrDiseaseQualifiersMixin", - "FeatureOrDiseaseQualifiersToEntityMixin" - ], + "owner": "onset_qualifier", "range": "Onset", "@type": "SlotDefinition" }, @@ -4419,7 +4540,7 @@ "translator_minimal" ], "from_schema": "https://w3id.org/biolink/biolink-model", - "is_a": "association_slot", + "is_a": "statement_qualifier", "domain": "Association", "slot_uri": "https://w3id.org/biolink/vocab/stage_qualifier", "owner": "GeneToExpressionSiteAssociation", @@ -4993,7 +5114,7 @@ ], "description": "Holds between two entities where the presence or application of one alters the chance that the other will come to be.", "notes": [ - "This predicate implies causation, where the 'affected' entity is something that does not yet exist, and the actions/execution of effector impact the likelihood that this entity may come to be. It is NOT to be used for a statistical associations that describe correlations between two feature variables (use predicates in the 'associated with likelihood of' hierarchy here.)" + "- This predicate implies causation, where the 'affected' entity is something that does not yet exist, and the actions/execution of effector impact the likelihood that this entity may come to be. It is NOT to be used for a statistical associations that describe correlations between two feature variables (use predicates in the 'associated with likelihood of' hierarchy here.)" ], "in_subset": [ "translator_minimal" @@ -7221,11 +7342,6 @@ "tag": "canonical_predicate", "value": true, "@type": "Annotation" - }, - { - "tag": "opposite_of", - "value": "prevents", - "@type": "Annotation" } ], "description": "holds between two entities where the occurrence, existence, or activity of one causes the occurrence or generation of the other", @@ -7243,7 +7359,6 @@ "http://purl.obolibrary.org/obo/MONDO_disease_triggers", "http://purl.obolibrary.org/obo/GOREL_0000040", "http://purl.obolibrary.org/obo/MONDO_disease_causes_feature", - "http://purl.obolibrary.org/obo/MONDO_disease_triggers", "http://purl.obolibrary.org/obo/NCIT_allele_has_abnormality", "http://purl.obolibrary.org/obo/NCIT_biological_process_has_result_biological_process", "http://purl.obolibrary.org/obo/NCIT_chemical_or_drug_has_physiologic_effect", @@ -7582,7 +7697,6 @@ ], "exact_mappings": [ "http://identifiers.org/drugbank/treats", - "https://skr3.nlm.nih.gov/SemMedDBTREATS", "https://www.wikidata.org/prop/P2175" ], "related_mappings": [ @@ -7662,7 +7776,7 @@ ], "description": "Holds between an substance, procedure, or activity and a medical condition, and reports that one or more scientific study has been performed to specifically test the potential of the substance, procedure, or activity to treat the medical condition (i.e. to ameliorate, stabilize, or cure the condition, or to delay, prevent, or reduce the risk of it manifesting in the first place).", "notes": [ - "Predicates in this hierarchy are used in practice when a source reports performance of a study, but there is not sufficient evidence or demonstrated efficacy against the condition to warrant creating a \u2018treats\u2019 assertion edge. Note however that a 'studied to treat' edge may be used as evidence to support creation of a separate 'treats' prediction edge. A knowledge level of Observation MUST be used with this predicate (because it is merely reporting that a study was observed to have been performed)." + "Predicates in this hierarchy are used in practice when a source reports performance of a study, but there is not sufficient evidence or demonstrated efficacy against the condition to warrant creating a \u2018treats\u2019 assertion edge. Note however that a 'studied to treat' edge may be used as evidence to support creation of a separate 'treats' prediction edge." ], "from_schema": "https://w3id.org/biolink/biolink-model", "is_a": "related_to_at_instance_level", @@ -7702,7 +7816,7 @@ ], "description": "Holds between an intervention and a medical condition, and reports that a clinical trial is being or has been performed in human patients to test the potential of the intervention to treat the medical condition (e.g. to ameliorate, stabilize, or cure the condition, or to delay, prevent, or reduce the risk of it manifesting in the first place).", "notes": [ - "This predicate should be used when a source reports a clinical trial where the intervention is being or was interrogated, regardless of the phase of the trial, or its ultimate outcome. Information about phase and outcome can be capture using other modeling elements. A knowledge level of \"\"Observation\"\" MUST be used with this predicate (because it is merely reporting that a study was observed to have been performed). Note that if the source reports an intervention to be in a phase 4 trial, or a completed phase 3 trial where clinical benefit was demonstrated, a separate 'treats' edge SHOULD also be created (with knowledge_level = Assertion)." + "This predicate should be used when a source reports a clinical trial where the intervention is being or was interrogated, regardless of the phase of the trial, or its ultimate outcome. Information about phase and outcome can be capture using other modeling elements." ], "in_subset": [ "translator_minimal" @@ -7731,9 +7845,6 @@ } ], "description": "Holds between an substance, procedure, or activity and a medical condition, and reports that a pre-clinical study has been performed specifically to test the potential of the substance, procedure, or activity to treat the medical condition (i.e. to ameliorate, stabilize, or cure the condition, or to delay, prevent, or reduce the risk of it manifesting in the first place).", - "notes": [ - "A knowledge level of Observation MUST be used with this predicate (because it is merely reporting that a study was observed to have been performed)." - ], "in_subset": [ "translator_minimal" ], @@ -7762,7 +7873,7 @@ ], "description": "Holds between an substance, procedure, or activity and a medical condition, and reports that the substance, procedure, or activity has been shown to be effective in alleviating, preventing, or delaying symptoms/ phenotypes associated with a disease, in a model system for that disease (e.g. a mouse, fly, cell line, etc).", "notes": [ - "This predicate would be used to represent Model Organism Database (MOD) records reporting that an intervention alleviated phenotypes associated with a human disease in a model organism designated as a model of that disease. (e.g. a ZFIN record reporting that treatment with Braf Inhibitors reduced the abnormal brain cell proliferation phenotype of zebrafish used to model the human disease Kabuki Syndrome) . A knowledge level of Assertion should be used with this predicate, because it requires interpretation of results to conclude an intervention to be 'beneficial', and thus goes beyond merely reporting the occurrence of a study)." + "This predicate would be used to represent Model Organism Database (MOD) records reporting that an intervention alleviated phenotypes associated with a human disease in a model organism designated as a model of that disease. (e.g. a ZFIN record reporting that treatment with Braf Inhibitors reduced the abnormal brain cell proliferation phenotype of zebrafish used to model the human disease Kabuki Syndrome) ." ], "in_subset": [ "translator_minimal" @@ -7792,7 +7903,7 @@ ], "description": "Holds between an substance, procedure, or activity and a medical condition, and reports that the substance, procedure, or activity was actually taken by one or more patients with the intent of treating the condition.", "notes": [ - "This predicate is used simply to report observations of use in the real world, and is agnostic to whether the treatment is approved for or might be effective in treating the condition. The treatment could be taken by a patient on their own accord or prescribed by a clinician, as an off-label or an approved intervention. In practice, it would be used to represent records/statements from patient self-reporting sources like FAERS / AEOLUS where patients directly report the condition for which they took a drug, or statements from a database cataloging instances of off-label prescription of drugs for specific conditions (e.g. here, here, here). A knowledge level of Observation MUST be used with this predicate (because it is merely reporting that an intervention was used / prescribed for use at some point in time)." + "This predicate is used simply to report observations of use in the real world, and is agnostic to whether the treatment is approved for or might be effective in treating the condition. The treatment could be taken by a patient on their own accord or prescribed by a clinician, as an off-label or an approved intervention. In practice, it would be used to represent records/statements from patient self-reporting sources like FAERS / AEOLUS where patients directly report the condition for which they took a drug, or statements from a database cataloging instances of off-label prescription of drugs for specific conditions (e.g. here, here, here)." ], "in_subset": [ "translator_minimal" @@ -7833,6 +7944,9 @@ "translator_minimal" ], "from_schema": "https://w3id.org/biolink/biolink-model", + "exact_mappings": [ + "https://skr3.nlm.nih.gov/SemMedDBTREATS" + ], "mixin": true, "slot_uri": "https://w3id.org/biolink/vocab/treats_or_applied_or_studied_to_treat", "range": "string", @@ -9190,11 +9304,6 @@ "tag": "canonical_predicate", "value": true, "@type": "Annotation" - }, - { - "tag": "opposite_of", - "value": "prevents", - "@type": "Annotation" } ], "description": "holds between a physical entity and a process, where the physical entity executes the process", @@ -11173,9 +11282,13 @@ "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "examples": [ { - "value": "['breast cancer', 'cancer']", + "value": "breast cancer", "description": "The object label closure of the association between the gene 'BRCA1' and the disease 'breast cancer' is the set of all labels that are ancestors of 'breast cancer' in the biolink model.", "@type": "Example" + }, + { + "value": "cancer", + "@type": "Example" } ], "from_schema": "https://w3id.org/biolink/biolink-model", @@ -11281,9 +11394,31 @@ "is_a": "association_slot", "domain": "Association", "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#subject", - "owner": "Association", + "owner": "OrganismTaxonToEntityAssociation", "domain_of": [ - "Association" + "Association", + "CellLineToEntityAssociationMixin", + "ChemicalEntityToEntityAssociationMixin", + "DrugToEntityAssociationMixin", + "ChemicalToEntityAssociationMixin", + "CaseToEntityAssociationMixin", + "ChemicalToChemicalAssociation", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", + "MaterialSampleToEntityAssociationMixin", + "MaterialSampleDerivationAssociation", + "DiseaseToEntityAssociationMixin", + "EntityToExposureEventAssociationMixin", + "EntityToOutcomeAssociationMixin", + "FrequencyQualifierMixin", + "EntityToPhenotypicFeatureAssociationMixin", + "DiseaseOrPhenotypicFeatureToEntityAssociationMixin", + "EntityToDiseaseOrPhenotypicFeatureAssociationMixin", + "GenotypeToEntityAssociationMixin", + "GeneToEntityAssociationMixin", + "VariantToEntityAssociationMixin", + "ModelToDiseaseAssociationMixin", + "MacromolecularMachineToEntityAssociationMixin", + "OrganismTaxonToEntityAssociation" ], "range": "NamedThing", "required": true, @@ -11316,9 +11451,31 @@ "is_a": "association_slot", "domain": "Association", "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#object", - "owner": "Association", + "owner": "OrganismTaxonToEntityAssociation", "domain_of": [ - "Association" + "Association", + "CellLineToEntityAssociationMixin", + "ChemicalEntityToEntityAssociationMixin", + "DrugToEntityAssociationMixin", + "ChemicalToEntityAssociationMixin", + "CaseToEntityAssociationMixin", + "ChemicalToChemicalAssociation", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", + "MaterialSampleToEntityAssociationMixin", + "MaterialSampleDerivationAssociation", + "DiseaseToEntityAssociationMixin", + "EntityToExposureEventAssociationMixin", + "EntityToOutcomeAssociationMixin", + "FrequencyQualifierMixin", + "EntityToPhenotypicFeatureAssociationMixin", + "DiseaseOrPhenotypicFeatureToEntityAssociationMixin", + "EntityToDiseaseOrPhenotypicFeatureAssociationMixin", + "GenotypeToEntityAssociationMixin", + "GeneToEntityAssociationMixin", + "VariantToEntityAssociationMixin", + "ModelToDiseaseAssociationMixin", + "MacromolecularMachineToEntityAssociationMixin", + "OrganismTaxonToEntityAssociation" ], "range": "NamedThing", "required": true, @@ -11354,10 +11511,32 @@ "is_a": "association_slot", "domain": "Association", "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate", - "owner": "Association", + "owner": "OrganismTaxonToEntityAssociation", "domain_of": [ "PredicateMapping", - "Association" + "Association", + "CellLineToEntityAssociationMixin", + "ChemicalEntityToEntityAssociationMixin", + "DrugToEntityAssociationMixin", + "ChemicalToEntityAssociationMixin", + "CaseToEntityAssociationMixin", + "ChemicalToChemicalAssociation", + "NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", + "MaterialSampleToEntityAssociationMixin", + "MaterialSampleDerivationAssociation", + "DiseaseToEntityAssociationMixin", + "EntityToExposureEventAssociationMixin", + "EntityToOutcomeAssociationMixin", + "FrequencyQualifierMixin", + "EntityToPhenotypicFeatureAssociationMixin", + "DiseaseOrPhenotypicFeatureToEntityAssociationMixin", + "EntityToDiseaseOrPhenotypicFeatureAssociationMixin", + "GenotypeToEntityAssociationMixin", + "GeneToEntityAssociationMixin", + "VariantToEntityAssociationMixin", + "ModelToDiseaseAssociationMixin", + "MacromolecularMachineToEntityAssociationMixin", + "OrganismTaxonToEntityAssociation" ], "range": "predicate_type", "required": true, @@ -15614,6 +15793,25 @@ { "name": "named_thing_associated_with_likelihood_of_named_thing_association_subject_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -15654,6 +15852,25 @@ { "name": "named_thing_associated_with_likelihood_of_named_thing_association_object_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -15807,6 +16024,29 @@ { "name": "chemical_gene_interaction_association_subject_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -15827,6 +16067,7 @@ { "name": "chemical_gene_interaction_association_subject_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -15847,6 +16088,13 @@ { "name": "chemical_gene_interaction_association_subject_derivative_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_derivative_qualifier", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement).", + "examples": [ + { + "value": "metabolite", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -15887,6 +16135,29 @@ { "name": "chemical_gene_interaction_association_object_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -15907,6 +16178,7 @@ { "name": "chemical_gene_interaction_association_object_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -16017,6 +16289,29 @@ { "name": "chemical_affects_gene_association_subject_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16037,6 +16332,7 @@ { "name": "chemical_affects_gene_association_subject_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -16057,6 +16353,13 @@ { "name": "chemical_affects_gene_association_subject_derivative_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_derivative_qualifier", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement).", + "examples": [ + { + "value": "metabolite", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16077,6 +16380,25 @@ { "name": "chemical_affects_gene_association_subject_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16117,6 +16439,7 @@ { "name": "chemical_affects_gene_association_subject_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -16236,6 +16559,29 @@ { "name": "chemical_affects_gene_association_object_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16256,6 +16602,7 @@ { "name": "chemical_affects_gene_association_object_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -16276,6 +16623,25 @@ { "name": "chemical_affects_gene_association_object_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16316,6 +16682,7 @@ { "name": "chemical_affects_gene_association_object_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -16462,6 +16829,29 @@ { "name": "gene_affects_chemical_association_subject_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16482,6 +16872,7 @@ { "name": "gene_affects_chemical_association_subject_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -16502,6 +16893,25 @@ { "name": "gene_affects_chemical_association_subject_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16542,6 +16952,7 @@ { "name": "gene_affects_chemical_association_subject_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -16660,6 +17071,29 @@ { "name": "gene_affects_chemical_association_object_form_or_variant_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_form_or_variant_qualifier", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "mutation", + "@type": "Example" + }, + { + "value": "late stage", + "@type": "Example" + }, + { + "value": "severe", + "@type": "Example" + }, + { + "value": "transplant", + "@type": "Example" + }, + { + "value": "chemical analog", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16680,6 +17114,7 @@ { "name": "gene_affects_chemical_association_object_part_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_part_qualifier", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).", "in_subset": [ "translator_minimal" ], @@ -16700,6 +17135,13 @@ { "name": "gene_affects_chemical_association_object_derivative_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_derivative_qualifier", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the object of an association (or statement).", + "examples": [ + { + "value": "metabolite", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16720,6 +17162,25 @@ { "name": "gene_affects_chemical_association_object_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -16760,6 +17221,7 @@ { "name": "gene_affects_chemical_association_object_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -18093,6 +18555,25 @@ { "name": "gene_to_disease_or_phenotypic_feature_association_subject_aspect_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/subject_aspect_qualifier", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "examples": [ + { + "value": "stability", + "@type": "Example" + }, + { + "value": "abundance", + "@type": "Example" + }, + { + "value": "expression", + "@type": "Example" + }, + { + "value": "exposure", + "@type": "Example" + } + ], "in_subset": [ "translator_minimal" ], @@ -18149,6 +18630,7 @@ { "name": "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -18567,7 +19049,7 @@ "http://www.w3.org/2002/07/owl#annotatedProperty", "http://purl.org/oban/association_has_predicate" ], - "is_a": "gene_to_disease_or_phenotypic_feature_association_predicate", + "is_a": "predicate", "domain": "DruggableGeneToDiseaseAssociation", "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate", "alias": "predicate", @@ -21112,6 +21594,7 @@ { "name": "chemical_entity_or_gene_or_gene_product_regulates_gene_association_object_direction_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/object_direction_qualifier", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).", "in_subset": [ "translator_minimal" ], @@ -22256,6 +22739,12 @@ }, { "name": "ChemicalOrDrugOrTreatment", + "id_prefixes": [ + "PUBCHEM.COMPOUND", + "CHEMBL.COMPOUND", + "CHEBI", + "MAXO" + ], "definition_uri": "https://w3id.org/biolink/vocab/ChemicalOrDrugOrTreatment", "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, @@ -23093,9 +23582,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", - "publication_name", - "publication_publication_type" + "publication_name" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/Publication", @@ -23133,8 +23622,8 @@ "keywords", "mesh_terms", "xref", - "publication_name", "publication_publication_type", + "publication_name", "book_id", "book_type" ], @@ -23170,9 +23659,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", "publication_name", - "publication_publication_type", "book_chapter_published_in", "volume", "chapter" @@ -23216,8 +23705,8 @@ "keywords", "mesh_terms", "xref", - "publication_name", "publication_publication_type", + "publication_name", "iso_abbreviation", "volume", "issue", @@ -23264,9 +23753,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", "publication_name", - "publication_publication_type", "article_published_in", "article_iso_abbreviation", "volume", @@ -23311,9 +23800,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", "publication_name", - "publication_publication_type", "article_published_in", "article_iso_abbreviation", "volume", @@ -23354,9 +23843,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", - "publication_name", - "publication_publication_type" + "publication_name" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/Patent", @@ -23393,9 +23882,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", - "publication_name", - "publication_publication_type" + "publication_name" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/WebPage", @@ -23431,9 +23920,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", - "publication_name", - "publication_publication_type" + "publication_name" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/PreprintPublication", @@ -23468,9 +23957,9 @@ "keywords", "mesh_terms", "xref", + "publication_publication_type", "publication_id", - "publication_name", - "publication_publication_type" + "publication_name" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/DrugLabel", @@ -29243,7 +29732,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "cell_line_to_entity_association_mixin_subject" + "cell_line_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/CellLineToEntityAssociationMixin", @@ -29309,7 +29800,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "chemical_entity_to_entity_association_mixin_subject" + "chemical_entity_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/ChemicalEntityToEntityAssociationMixin", @@ -29326,6 +29819,9 @@ "is_a": "ChemicalEntityToEntityAssociationMixin", "mixin": true, "slots": [ + "subject", + "predicate", + "object", "drug_to_entity_association_mixin_subject" ], "slot_usage": {}, @@ -29343,6 +29839,9 @@ "is_a": "ChemicalEntityToEntityAssociationMixin", "mixin": true, "slots": [ + "subject", + "predicate", + "object", "chemical_to_entity_association_mixin_subject" ], "slot_usage": {}, @@ -29359,7 +29858,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "case_to_entity_association_mixin_subject" + "case_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/CaseToEntityAssociationMixin", @@ -29384,8 +29885,6 @@ "description", "has_attribute", "deprecated", - "subject", - "predicate", "negated", "qualifier", "qualifiers", @@ -29411,6 +29910,8 @@ "retrieval_source_ids", "association_type", "association_category", + "subject", + "predicate", "chemical_to_chemical_association_object" ], "slot_usage": {}, @@ -29433,7 +29934,6 @@ "description", "has_attribute", "deprecated", - "predicate", "negated", "qualifier", "qualifiers", @@ -29459,6 +29959,7 @@ "retrieval_source_ids", "association_type", "association_category", + "predicate", "chemical_to_chemical_association_object", "stoichiometry", "reaction_direction", @@ -29486,7 +29987,6 @@ "description", "has_attribute", "deprecated", - "predicate", "negated", "qualifier", "qualifiers", @@ -29512,6 +30012,7 @@ "retrieval_source_ids", "association_type", "association_category", + "predicate", "stoichiometry", "reaction_direction", "reaction_side", @@ -29911,8 +30412,6 @@ "description", "has_attribute", "deprecated", - "subject", - "object", "negated", "qualifier", "qualifiers", @@ -29938,11 +30437,14 @@ "retrieval_source_ids", "association_type", "association_category", - "named_thing_associated_with_likelihood_of_named_thing_association_predicate", + "subject", "named_thing_associated_with_likelihood_of_named_thing_association_subject_aspect_qualifier", "named_thing_associated_with_likelihood_of_named_thing_association_subject_context_qualifier", + "named_thing_associated_with_likelihood_of_named_thing_association_predicate", + "object", "named_thing_associated_with_likelihood_of_named_thing_association_object_aspect_qualifier", - "named_thing_associated_with_likelihood_of_named_thing_association_object_context_qualifier" + "named_thing_associated_with_likelihood_of_named_thing_association_object_context_qualifier", + "population_context_qualifier" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/NamedThingAssociatedWithLikelihoodOfNamedThingAssociation", @@ -30066,14 +30568,14 @@ "chemical_affects_gene_association_object_part_qualifier", "chemical_affects_gene_association_object_aspect_qualifier", "chemical_affects_gene_association_object_context_qualifier", + "chemical_affects_gene_association_object_direction_qualifier", "chemical_affects_gene_association_causal_mechanism_qualifier", "chemical_affects_gene_association_anatomical_context_qualifier", "chemical_affects_gene_association_qualified_predicate", + "chemical_affects_gene_association_species_context_qualifier", "chemical_affects_gene_association_subject", "chemical_affects_gene_association_predicate", - "chemical_affects_gene_association_object", - "chemical_affects_gene_association_object_direction_qualifier", - "chemical_affects_gene_association_species_context_qualifier" + "chemical_affects_gene_association_object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/ChemicalAffectsGeneAssociation", @@ -30133,15 +30635,15 @@ "gene_affects_chemical_association_object_part_qualifier", "gene_affects_chemical_association_object_aspect_qualifier", "gene_affects_chemical_association_object_context_qualifier", + "gene_affects_chemical_association_object_direction_qualifier", + "gene_affects_chemical_association_object_derivative_qualifier", "gene_affects_chemical_association_causal_mechanism_qualifier", "gene_affects_chemical_association_anatomical_context_qualifier", "gene_affects_chemical_association_qualified_predicate", + "gene_affects_chemical_association_species_context_qualifier", "gene_affects_chemical_association_subject", "gene_affects_chemical_association_predicate", - "gene_affects_chemical_association_object", - "gene_affects_chemical_association_object_derivative_qualifier", - "gene_affects_chemical_association_object_direction_qualifier", - "gene_affects_chemical_association_species_context_qualifier" + "gene_affects_chemical_association_object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/GeneAffectsChemicalAssociation", @@ -30210,7 +30712,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "material_sample_to_entity_association_mixin_subject" + "material_sample_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/MaterialSampleToEntityAssociationMixin", @@ -30258,8 +30762,8 @@ "association_type", "association_category", "material_sample_derivation_association_subject", - "material_sample_derivation_association_object", - "material_sample_derivation_association_predicate" + "material_sample_derivation_association_predicate", + "material_sample_derivation_association_object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/MaterialSampleDerivationAssociation", @@ -30329,7 +30833,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "disease_to_entity_association_mixin_subject" + "disease_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/DiseaseToEntityAssociationMixin", @@ -30345,6 +30851,8 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ + "subject", + "predicate", "entity_to_exposure_event_association_mixin_object" ], "slot_usage": {}, @@ -30415,6 +30923,8 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ + "subject", + "predicate", "entity_to_outcome_association_mixin_object" ], "slot_usage": {}, @@ -30486,7 +30996,10 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "frequency_qualifier" + "frequency_qualifier", + "subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/FrequencyQualifierMixin", @@ -30501,8 +31014,14 @@ "mixin": true, "slots": [ "frequency_qualifier", - "severity_qualifier", - "onset_qualifier" + "subject", + "predicate", + "object", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/EntityToFeatureOrDiseaseQualifiersMixin", @@ -30517,8 +31036,14 @@ "mixin": true, "slots": [ "frequency_qualifier", - "severity_qualifier", - "onset_qualifier" + "subject", + "predicate", + "object", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/FeatureOrDiseaseQualifiersToEntityMixin", @@ -30535,10 +31060,15 @@ ], "slots": [ "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", - "sex_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", + "subject", + "predicate", "entity_to_phenotypic_feature_association_mixin_object", + "sex_qualifier", "has_count", "has_total", "has_quotient", @@ -30562,8 +31092,13 @@ ], "slots": [ "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "predicate", + "object", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "phenotypic_feature_to_entity_association_mixin_subject", "has_count", @@ -30640,8 +31175,13 @@ "mixin": true, "slots": [ "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject", + "predicate", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "entity_to_disease_association_mixin_object" ], "slot_usage": {}, @@ -30657,7 +31197,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "disease_or_phenotypic_feature_to_entity_association_mixin_subject" + "disease_or_phenotypic_feature_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/DiseaseOrPhenotypicFeatureToEntityAssociationMixin", @@ -30770,6 +31312,8 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ + "subject", + "predicate", "entity_to_disease_or_phenotypic_feature_association_mixin_object" ], "slot_usage": {}, @@ -30785,7 +31329,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "genotype_to_entity_association_mixin_subject" + "genotype_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/GenotypeToEntityAssociationMixin", @@ -30840,8 +31386,11 @@ "genotype_to_phenotypic_feature_association_predicate", "genotype_to_phenotypic_feature_association_subject", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -30901,8 +31450,11 @@ "association_category", "exposure_event_to_phenotypic_feature_association_subject", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -30966,8 +31518,11 @@ "disease_to_phenotypic_feature_association_subject", "disease_to_phenotypic_feature_association_object", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31028,8 +31583,11 @@ "association_type", "association_category", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31089,8 +31647,11 @@ "behavior_to_behavioral_feature_association_subject", "behavior_to_behavioral_feature_association_object", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31111,7 +31672,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "gene_to_entity_association_mixin_subject" + "gene_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/GeneToEntityAssociationMixin", @@ -31133,7 +31696,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "variant_to_entity_association_mixin_subject" + "variant_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/VariantToEntityAssociationMixin", @@ -31199,8 +31764,9 @@ "gene_to_disease_or_phenotypic_feature_association_object", "gene_to_disease_or_phenotypic_feature_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31259,8 +31825,9 @@ "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "gene_to_disease_or_phenotypic_feature_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31331,8 +31898,9 @@ "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "gene_to_disease_or_phenotypic_feature_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31394,8 +31962,9 @@ "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "gene_to_disease_or_phenotypic_feature_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31457,8 +32026,9 @@ "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "gene_to_disease_or_phenotypic_feature_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31518,8 +32088,9 @@ "gene_to_disease_or_phenotypic_feature_association_subject_aspect_qualifier", "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31584,8 +32155,11 @@ "association_category", "phenotypic_feature_to_disease_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31868,8 +32442,11 @@ "association_category", "variant_to_phenotypic_feature_association_subject", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -31932,8 +32509,11 @@ "variant_to_disease_association_predicate", "variant_to_disease_association_object", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier" + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/VariantToDiseaseAssociation", @@ -31991,8 +32571,11 @@ "genotype_to_disease_association_predicate", "genotype_to_disease_association_object", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier" + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/GenotypeToDiseaseAssociation", @@ -32010,7 +32593,8 @@ "mixin": true, "slots": [ "model_to_disease_association_mixin_subject", - "model_to_disease_association_mixin_predicate" + "model_to_disease_association_mixin_predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/ModelToDiseaseAssociationMixin", @@ -32061,8 +32645,9 @@ "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "gene_to_disease_or_phenotypic_feature_association_predicate", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -32124,8 +32709,11 @@ "variant_to_disease_association_predicate", "variant_to_disease_association_object", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "variant_as_a_model_of_disease_association_subject" ], "slot_usage": {}, @@ -32181,8 +32769,11 @@ "genotype_to_disease_association_predicate", "genotype_to_disease_association_object", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate", "genotype_as_a_model_of_disease_association_subject" ], "slot_usage": {}, @@ -32239,8 +32830,11 @@ "association_category", "cell_line_as_a_model_of_disease_association_subject", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier" + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/CellLineAsAModelOfDiseaseAssociation", @@ -32296,8 +32890,11 @@ "association_category", "organismal_entity_as_a_model_of_disease_association_subject", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier" + "subject_aspect_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "object_direction_qualifier", + "qualified_predicate" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/OrganismalEntityAsAModelOfDiseaseAssociation", @@ -32448,8 +33045,9 @@ "gene_to_disease_or_phenotypic_feature_association_subject_aspect_qualifier", "gene_to_disease_or_phenotypic_feature_association_object_direction_qualifier", "frequency_qualifier", - "severity_qualifier", - "onset_qualifier", + "subject_direction_qualifier", + "object_aspect_qualifier", + "qualified_predicate", "sex_qualifier", "has_count", "has_total", @@ -32635,7 +33233,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "macromolecular_machine_to_entity_association_mixin_subject" + "macromolecular_machine_to_entity_association_mixin_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/MacromolecularMachineToEntityAssociationMixin", @@ -33545,7 +34145,9 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "mixin": true, "slots": [ - "organism_taxon_to_entity_association_subject" + "organism_taxon_to_entity_association_subject", + "predicate", + "object" ], "slot_usage": {}, "class_uri": "https://w3id.org/biolink/vocab/OrganismTaxonToEntityAssociation", @@ -33759,9 +34361,9 @@ ], "metamodel_version": "1.7.0", "source_file": "biolink_model.yaml", - "source_file_date": "2024-01-05T20:27:13", - "source_file_size": 371160, - "generation_date": "2024-01-05T20:27:20", + "source_file_date": "2024-01-09T01:11:41", + "source_file_size": 376530, + "generation_date": "2024-01-09T01:11:48", "@type": "SchemaDefinition", "@context": [ "project/jsonld/biolink_model.context.jsonld", diff --git a/project/jsonschema/biolink_model.schema.json b/project/jsonschema/biolink_model.schema.json index 77dcbbdcc..d2e852945 100644 --- a/project/jsonschema/biolink_model.schema.json +++ b/project/jsonschema/biolink_model.schema.json @@ -853,6 +853,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "published_in": { "description": "The enclosing parent serial containing the article should have industry-standard identifier from ISSN.", "type": "string" @@ -891,6 +898,7 @@ }, "required": [ "published_in", + "publication_type", "id", "category" ], @@ -1481,6 +1489,10 @@ "description": "behavioral feature that is the object of the association", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -1499,6 +1511,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -1510,10 +1526,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -1541,6 +1553,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -1559,10 +1575,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -1571,6 +1583,10 @@ "description": "behavior that is the subject of the association", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -1589,6 +1605,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -2339,6 +2359,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -2369,6 +2396,7 @@ } }, "required": [ + "publication_type", "id", "category" ], @@ -2471,6 +2499,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "published_in": { "description": "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN.", "type": "string" @@ -2509,6 +2544,7 @@ }, "required": [ "published_in", + "publication_type", "id", "category" ], @@ -2693,6 +2729,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -2711,6 +2751,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -2722,10 +2766,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -2753,6 +2793,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -2771,10 +2815,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -2783,6 +2823,10 @@ "description": "the case (e.g. patient) that has the property", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -2801,6 +2845,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -2920,6 +2968,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -2939,7 +2991,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -2952,10 +3005,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -2983,6 +3032,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -3001,10 +3054,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -3014,7 +3063,8 @@ "description": "gene in which variation is shown to cause the disease." }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -3034,6 +3084,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -3347,6 +3401,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -3365,6 +3423,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -3376,10 +3438,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -3407,6 +3465,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -3425,14 +3487,14 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "subject": { "description": "A cell line derived from an organismal entity with a disease state that is used as a model of that disease.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -3451,6 +3513,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -3940,7 +4006,8 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." }, "object_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -3963,8 +4030,13 @@ "object_context_qualifier": { "type": "string" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_form_or_variant_qualifier": { - "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum" + "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -3978,7 +4050,8 @@ "type": "string" }, "object_part_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", @@ -4029,12 +4102,17 @@ }, "type": "array" }, + "species_context_qualifier": { + "description": "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place.", + "type": "string" + }, "subject": { "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -4058,13 +4136,16 @@ "type": "string" }, "subject_derivative_qualifier": { - "$ref": "#/$defs/ChemicalEntityDerivativeEnum" + "$ref": "#/$defs/ChemicalEntityDerivativeEnum", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement)." }, "subject_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." }, "subject_form_or_variant_qualifier": { - "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum" + "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -4078,7 +4159,8 @@ "type": "string" }, "subject_part_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." }, "timepoint": { "description": "a point in time", @@ -4499,7 +4581,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -4807,7 +4890,8 @@ "type": "string" }, "object_form_or_variant_qualifier": { - "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum" + "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -4821,7 +4905,8 @@ "type": "string" }, "object_part_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", @@ -4894,10 +4979,12 @@ "type": "string" }, "subject_derivative_qualifier": { - "$ref": "#/$defs/ChemicalEntityDerivativeEnum" + "$ref": "#/$defs/ChemicalEntityDerivativeEnum", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement)." }, "subject_form_or_variant_qualifier": { - "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum" + "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -4911,7 +4998,8 @@ "type": "string" }, "subject_part_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." }, "timepoint": { "description": "a point in time", @@ -8172,6 +8260,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -8191,7 +8283,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -8204,10 +8297,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -8235,6 +8324,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -8253,10 +8346,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -8266,7 +8355,8 @@ "description": "gene in which variation is shown to correlate with the disease." }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -8286,6 +8376,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -9856,6 +9950,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -9874,6 +9972,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -9885,10 +9987,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -9916,6 +10014,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -9934,10 +10036,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -9946,6 +10044,10 @@ "description": "disease class", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -9964,6 +10066,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -10337,6 +10443,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -10366,6 +10479,7 @@ } }, "required": [ + "publication_type", "id", "category" ], @@ -10774,6 +10888,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -10793,7 +10911,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -10806,10 +10925,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -10837,6 +10952,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -10855,10 +10974,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -10868,7 +10983,8 @@ "description": "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -10888,6 +11004,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -12459,6 +12579,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -12477,6 +12601,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -12488,10 +12616,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -12519,6 +12643,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -12537,10 +12665,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -12549,6 +12673,10 @@ "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -12567,6 +12695,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -13308,7 +13440,8 @@ "type": "string" }, "object_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13331,8 +13464,17 @@ "object_context_qualifier": { "type": "string" }, + "object_derivative_qualifier": { + "$ref": "#/$defs/ChemicalEntityDerivativeEnum", + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the object of an association (or statement)." + }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_form_or_variant_qualifier": { - "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum" + "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13346,7 +13488,8 @@ "type": "string" }, "object_part_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", @@ -13397,12 +13540,17 @@ }, "type": "array" }, + "species_context_qualifier": { + "description": "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place.", + "type": "string" + }, "subject": { "$ref": "#/$defs/GeneOrGeneProduct", "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13426,13 +13574,16 @@ "type": "string" }, "subject_derivative_qualifier": { + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement).", "type": "string" }, "subject_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." }, "subject_form_or_variant_qualifier": { - "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum" + "$ref": "#/$defs/ChemicalOrGeneOrGeneProductFormOrVariantEnum", + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13446,7 +13597,8 @@ "type": "string" }, "subject_part_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalPartQualifierEnum", + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." }, "timepoint": { "description": "a point in time", @@ -13556,6 +13708,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -13575,7 +13731,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13588,10 +13745,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -13619,6 +13772,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -13637,10 +13794,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -13650,7 +13803,8 @@ "description": "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13670,6 +13824,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -13888,6 +14046,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -13907,7 +14069,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -13920,10 +14083,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -13951,6 +14110,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -13969,10 +14132,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -13982,7 +14141,8 @@ "description": "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -14002,7 +14162,12 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_form_or_variant_qualifier": { + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement).", "type": "string" }, "subject_label_closure": { @@ -14195,6 +14360,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -14214,7 +14383,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -14227,10 +14397,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -14258,6 +14424,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -14276,10 +14446,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -14289,7 +14455,8 @@ "description": "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -14309,6 +14476,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -14428,6 +14599,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -14447,7 +14622,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -14460,10 +14636,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -14491,6 +14663,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -14509,10 +14685,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -14522,7 +14694,8 @@ "description": "gene in which variation is correlated with the phenotypic feature" }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -14542,6 +14715,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -16057,6 +16234,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -16076,7 +16257,8 @@ "type": "array" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -16089,10 +16271,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -16120,6 +16298,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -16138,10 +16320,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -16151,7 +16329,8 @@ "description": "gene in which variation is correlated with the phenotypic feature" }, "subject_aspect_qualifier": { - "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum" + "$ref": "#/$defs/GeneOrGeneProductOrChemicalEntityAspectEnum", + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", @@ -16171,6 +16350,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -16902,6 +17085,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -16920,6 +17107,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -16931,10 +17122,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -16962,6 +17149,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -16980,14 +17171,14 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "subject": { "description": "A genotype that has a role in modeling the disease.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -17006,6 +17197,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -17110,6 +17305,10 @@ "description": "a disease that is associated with that genotype", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -17128,6 +17327,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -17139,10 +17342,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -17170,6 +17369,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -17188,14 +17391,14 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "subject": { "description": "a genotype that is associated in some way with a disease state", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -17214,6 +17417,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -17725,6 +17932,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -17743,6 +17954,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -17754,10 +17969,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -17785,6 +17996,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -17803,10 +18018,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -17815,6 +18026,10 @@ "description": "genotype that is associated with the phenotypic feature", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -17833,6 +18048,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -19291,6 +19510,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "published_in": { "description": "The enclosing parent serial containing the article should have industry-standard identifier from ISSN.", "type": "string" @@ -19329,6 +19555,7 @@ }, "required": [ "published_in", + "publication_type", "id", "category" ], @@ -21975,6 +22202,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -21993,6 +22224,9 @@ }, "type": "array" }, + "object_context_qualifier": { + "type": "string" + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -22016,6 +22250,10 @@ "description": "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" }, + "population_context_qualifier": { + "description": "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association.", + "type": "string" + }, "predicate": { "description": "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.", "type": "string" @@ -22053,6 +22291,10 @@ "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -22071,6 +22313,9 @@ }, "type": "array" }, + "subject_context_qualifier": { + "type": "string" + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -22833,6 +23078,9 @@ }, "type": "array" }, + "has_taxonomic_rank": { + "type": "string" + }, "id": { "description": "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI", "type": "string" @@ -23543,6 +23791,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -23561,6 +23813,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -23572,10 +23828,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -23603,6 +23855,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -23621,14 +23877,14 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "subject": { "description": "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -23647,6 +23903,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -24167,6 +24427,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -24196,6 +24463,7 @@ } }, "required": [ + "publication_type", "id", "category" ], @@ -25005,6 +25273,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -25023,6 +25295,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -25034,10 +25310,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -25065,6 +25337,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -25083,10 +25359,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -25095,6 +25367,10 @@ "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -25113,6 +25389,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -26217,21 +26497,26 @@ "type": "array" }, "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", "type": "string" }, "object_context_qualifier": { "type": "string" }, "object_derivative_qualifier": { + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the object of an association (or statement).", "type": "string" }, "object_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." }, "object_form_or_variant_qualifier": { + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the object of an association (aka: statement).", "type": "string" }, "object_part_qualifier": { + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).", "type": "string" }, "predicate": { @@ -26247,21 +26532,26 @@ "type": "string" }, "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", "type": "string" }, "subject_context_qualifier": { "type": "string" }, "subject_derivative_qualifier": { + "description": "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier \u2018metabolite\u2019 combines with a \u2018Chemical X\u2019 core concept to express the composed concept \u2018a metabolite of Chemical X\u2019. This qualifier is for the subject of an association (or statement).", "type": "string" }, "subject_direction_qualifier": { - "$ref": "#/$defs/DirectionQualifierEnum" + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." }, "subject_form_or_variant_qualifier": { + "description": "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier \u2018mutation\u2019 combines with the core concept \u2018Gene X\u2019 to express the compose concept \u2018a mutation of Gene X\u2019. This qualifier specifies a change in the subject of an association (aka: statement).", "type": "string" }, "subject_part_qualifier": { + "description": "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).", "type": "string" } }, @@ -26363,6 +26653,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -26392,6 +26689,7 @@ } }, "required": [ + "publication_type", "id", "category" ], @@ -27079,6 +27377,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -27108,6 +27413,7 @@ } }, "required": [ + "publication_type", "id", "category" ], @@ -28775,6 +29081,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -28809,6 +29122,7 @@ } }, "required": [ + "publication_type", "id", "category" ], @@ -30571,6 +30885,10 @@ "description": "disease", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -30589,6 +30907,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -30600,10 +30922,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -30631,6 +30949,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -30649,14 +30971,14 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "subject": { "description": "A variant that has a role in modeling the disease.", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -30675,6 +30997,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -30779,6 +31105,10 @@ "description": "a disease that is associated with that variant", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -30797,6 +31127,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -30808,10 +31142,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -30839,6 +31169,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -30857,14 +31191,14 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "subject": { "description": "a sequence variant in which the allele state is associated in some way with the disease state", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -30883,6 +31217,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -31410,6 +31748,10 @@ "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", "type": "string" }, + "object_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).", + "type": "string" + }, "object_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -31428,6 +31770,10 @@ }, "type": "array" }, + "object_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." + }, "object_label_closure": { "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -31439,10 +31785,6 @@ "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" }, - "onset_qualifier": { - "description": "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject", - "type": "string" - }, "original_object": { "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", "type": "string" @@ -31470,6 +31812,10 @@ }, "type": "array" }, + "qualified_predicate": { + "description": "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a \u2018full statement\u2019 reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.", + "type": "string" + }, "qualifier": { "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", "type": "string" @@ -31488,10 +31834,6 @@ }, "type": "array" }, - "severity_qualifier": { - "description": "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject", - "type": "string" - }, "sex_qualifier": { "description": "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.", "type": "string" @@ -31500,6 +31842,10 @@ "description": "a sequence variant in which the allele state is associated in some way with the phenotype state", "type": "string" }, + "subject_aspect_qualifier": { + "description": "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).", + "type": "string" + }, "subject_category": { "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "type": "string" @@ -31518,6 +31864,10 @@ }, "type": "array" }, + "subject_direction_qualifier": { + "$ref": "#/$defs/DirectionQualifierEnum", + "description": "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." + }, "subject_label_closure": { "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", "items": { @@ -32043,6 +32393,13 @@ }, "type": "array" }, + "publication_type": { + "description": "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.", + "items": { + "type": "string" + }, + "type": "array" + }, "rights": { "type": "string" }, @@ -32072,6 +32429,7 @@ } }, "required": [ + "publication_type", "id", "category" ], diff --git a/project/owl/biolink_model.owl.ttl b/project/owl/biolink_model.owl.ttl index 8c72cf226..5b24245b4 100644 --- a/project/owl/biolink_model.owl.ttl +++ b/project/owl/biolink_model.owl.ttl @@ -209,7 +209,7 @@ biolink:applied_to_treat a owl:ObjectProperty ; "given to treat", "used to treat" ; skos:definition "Holds between an substance, procedure, or activity and a medical condition, and reports that the substance, procedure, or activity was actually taken by one or more patients with the intent of treating the condition." ; - skos:editorialNote "This predicate is used simply to report observations of use in the real world, and is agnostic to whether the treatment is approved for or might be effective in treating the condition. The treatment could be taken by a patient on their own accord or prescribed by a clinician, as an off-label or an approved intervention. In practice, it would be used to represent records/statements from patient self-reporting sources like FAERS / AEOLUS where patients directly report the condition for which they took a drug, or statements from a database cataloging instances of off-label prescription of drugs for specific conditions (e.g. here, here, here). A knowledge level of Observation MUST be used with this predicate (because it is merely reporting that an intervention was used / prescribed for use at some point in time)." ; + skos:editorialNote "This predicate is used simply to report observations of use in the real world, and is agnostic to whether the treatment is approved for or might be effective in treating the condition. The treatment could be taken by a patient on their own accord or prescribed by a clinician, as an off-label or an approved intervention. In practice, it would be used to represent records/statements from patient self-reporting sources like FAERS / AEOLUS where patients directly report the condition for which they took a drug, or statements from a database cataloging instances of off-label prescription of drugs for specific conditions (e.g. here, here, here)." ; skos:inScheme ; biolink:canonical_predicate true . @@ -220,7 +220,7 @@ biolink:beneficial_in_models_for a owl:ObjectProperty ; rdfs:subPropertyOf biolink:in_preclinical_trials_for, biolink:treats_or_applied_or_studied_to_treat ; skos:definition "Holds between an substance, procedure, or activity and a medical condition, and reports that the substance, procedure, or activity has been shown to be effective in alleviating, preventing, or delaying symptoms/ phenotypes associated with a disease, in a model system for that disease (e.g. a mouse, fly, cell line, etc)." ; - skos:editorialNote "This predicate would be used to represent Model Organism Database (MOD) records reporting that an intervention alleviated phenotypes associated with a human disease in a model organism designated as a model of that disease. (e.g. a ZFIN record reporting that treatment with Braf Inhibitors reduced the abnormal brain cell proliferation phenotype of zebrafish used to model the human disease Kabuki Syndrome) . A knowledge level of Assertion should be used with this predicate, because it requires interpretation of results to conclude an intervention to be 'beneficial', and thus goes beyond merely reporting the occurrence of a study)." ; + skos:editorialNote "This predicate would be used to represent Model Organism Database (MOD) records reporting that an intervention alleviated phenotypes associated with a human disease in a model organism designated as a model of that disease. (e.g. a ZFIN record reporting that treatment with Braf Inhibitors reduced the abnormal brain cell proliferation phenotype of zebrafish used to model the human disease Kabuki Syndrome) ." ; skos:inScheme ; biolink:canonical_predicate true . @@ -806,7 +806,7 @@ biolink:in_clinical_trials_for a owl:ObjectProperty ; rdfs:subPropertyOf biolink:studied_to_treat, biolink:treats_or_applied_or_studied_to_treat ; skos:definition "Holds between an intervention and a medical condition, and reports that a clinical trial is being or has been performed in human patients to test the potential of the intervention to treat the medical condition (e.g. to ameliorate, stabilize, or cure the condition, or to delay, prevent, or reduce the risk of it manifesting in the first place)." ; - skos:editorialNote "This predicate should be used when a source reports a clinical trial where the intervention is being or was interrogated, regardless of the phase of the trial, or its ultimate outcome. Information about phase and outcome can be capture using other modeling elements. A knowledge level of \"\"Observation\"\" MUST be used with this predicate (because it is merely reporting that a study was observed to have been performed). Note that if the source reports an intervention to be in a phase 4 trial, or a completed phase 3 trial where clinical benefit was demonstrated, a separate 'treats' edge SHOULD also be created (with knowledge_level = Assertion)." ; + skos:editorialNote "This predicate should be used when a source reports a clinical trial where the intervention is being or was interrogated, regardless of the phase of the trial, or its ultimate outcome. Information about phase and outcome can be capture using other modeling elements." ; skos:inScheme ; biolink:canonical_predicate true . @@ -1086,6 +1086,13 @@ biolink:occurs_together_in_literature_with a owl:ObjectProperty, skos:inScheme ; biolink:canonical_predicate true . +biolink:onset_qualifier a owl:ObjectProperty ; + rdfs:label "onset qualifier" ; + rdfs:range biolink:Onset ; + rdfs:subPropertyOf biolink:qualifier ; + skos:definition "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + skos:inScheme . + biolink:opposite_of a owl:DatatypeProperty, owl:SymmetricProperty ; rdfs:label "opposite of" ; @@ -1292,6 +1299,13 @@ biolink:sequence_variant_qualifier a owl:ObjectProperty ; skos:definition "a qualifier used in an association with the variant" ; skos:inScheme . +biolink:severity_qualifier a owl:ObjectProperty ; + rdfs:label "severity qualifier" ; + rdfs:range biolink:SeverityValue ; + rdfs:subPropertyOf biolink:qualifier ; + skos:definition "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + skos:inScheme . + biolink:start_coordinate a owl:DatatypeProperty ; rdfs:label "start coordinate" ; rdfs:subPropertyOf biolink:base_coordinate ; @@ -1339,7 +1353,7 @@ biolink:superclass_of a owl:ObjectProperty ; biolink:support_graphs a owl:DatatypeProperty ; rdfs:label "support graphs" ; rdfs:subPropertyOf biolink:association_slot ; - skos:definition "A list of knowledge graphs that support the existence of this node." ; + skos:definition "A list of knowledge graphs that support the existence of this association." ; skos:inScheme . biolink:supporting_data_set a owl:DatatypeProperty ; @@ -1730,8 +1744,7 @@ biolink:causes a owl:DatatypeProperty ; orphanet:317346, orphanet:410295, orphanet:410296 ; - biolink:canonical_predicate true ; - biolink:opposite_of "prevents" . + biolink:canonical_predicate true . biolink:close_match a owl:DatatypeProperty, owl:SymmetricProperty ; @@ -1900,8 +1913,7 @@ biolink:enables a owl:ObjectProperty ; skos:definition "holds between a physical entity and a process, where the physical entity executes the process" ; skos:exactMatch RO:0002327 ; skos:inScheme ; - biolink:canonical_predicate true ; - biolink:opposite_of "prevents" . + biolink:canonical_predicate true . biolink:exacerbates_condition a owl:ObjectProperty ; rdfs:label "exacerbates condition" ; @@ -2170,7 +2182,6 @@ biolink:in_preclinical_trials_for a owl:ObjectProperty ; rdfs:subPropertyOf biolink:studied_to_treat, biolink:treats_or_applied_or_studied_to_treat ; skos:definition "Holds between an substance, procedure, or activity and a medical condition, and reports that a pre-clinical study has been performed specifically to test the potential of the substance, procedure, or activity to treat the medical condition (i.e. to ameliorate, stabilize, or cure the condition, or to delay, prevent, or reduce the risk of it manifesting in the first place)." ; - skos:editorialNote "A knowledge level of Observation MUST be used with this predicate (because it is merely reporting that a study was observed to have been performed)." ; skos:inScheme ; biolink:canonical_predicate true . @@ -2576,9 +2587,6 @@ os:SomeSomeInterpretation a owl:Class ; biolink:AccessibleDnaRegion a owl:Class ; rdfs:label "accessible dna region" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; @@ -2587,6 +2595,9 @@ biolink:AccessibleDnaRegion a owl:Class ; [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity ], biolink:RegulatoryRegion ; skos:altLabel "atac-seq accessible region", "dnase-seq accessible region" ; @@ -2597,32 +2608,32 @@ biolink:AccessibleDnaRegion a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity ontogenic association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; skos:inScheme . @@ -2630,32 +2641,32 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity part of association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; skos:inScheme . @@ -2671,23 +2682,23 @@ biolink:Bacterium a owl:Class ; biolink:BehaviorToBehavioralFeatureAssociation a owl:Class ; rdfs:label "behavior to behavioral feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:BehavioralFeature ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Behavior ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:BehavioralFeature ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Behavior ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -2721,16 +2732,16 @@ biolink:Book a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:id ], biolink:Publication ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; @@ -2757,29 +2768,29 @@ biolink:CaseToPhenotypicFeatureAssociation a owl:Class ; biolink:CausalGeneToDiseaseAssociation a owl:Class ; rdfs:label "causal gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -2872,20 +2883,20 @@ biolink:Cell a owl:Class ; biolink:CellLineAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "cell line as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:CellLine ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; skos:inScheme . @@ -2899,49 +2910,43 @@ biolink:ChemicalAffectsGeneAssociation a owl:Class ; rdfs:label "chemical affects gene association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:anatomical_context_qualifier ], @@ -2949,116 +2954,122 @@ biolink:ChemicalAffectsGeneAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:species_context_qualifier ], biolink:Association ; skos:definition "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; skos:inScheme . @@ -3068,29 +3079,29 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:Association ; skos:inScheme . @@ -3098,38 +3109,38 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; rdfs:label "chemical entity or gene or gene product regulates gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -3140,107 +3151,107 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; biolink:ChemicalGeneInteractionAssociation a owl:Class ; rdfs:label "chemical gene interaction association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], biolink:Association ; skos:definition "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; skos:exactMatch SIO:001257 ; @@ -3249,20 +3260,20 @@ biolink:ChemicalGeneInteractionAssociation a owl:Class ; biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical or drug or treatment side effect disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; skos:inScheme . @@ -3290,35 +3301,35 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; rdfs:label "chemical to chemical derivation association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:catalyst_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], @@ -3329,20 +3340,20 @@ biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:Association ; skos:definition "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; skos:inScheme ; @@ -3351,25 +3362,25 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; biolink:ChemicalToPathwayAssociation a owl:Class ; rdfs:label "chemical to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:Pathway ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "An interaction between a chemical entity and a biological process or pathway." ; @@ -3420,10 +3431,10 @@ biolink:ClinicalMeasurement a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:minCardinality 1 ; owl:onProperty biolink:has_attribute_type ], biolink:ClinicalAttribute ; skos:definition "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; @@ -3477,35 +3488,35 @@ biolink:ConceptCountAnalysisResult a owl:Class ; biolink:ContributorAssociation a owl:Class ; rdfs:label "contributor association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:InformationContentEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:qualifiers ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:InformationContentEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Agent ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -3516,20 +3527,20 @@ biolink:ContributorAssociation a owl:Class ; biolink:CorrelatedGeneToDiseaseAssociation a owl:Class ; rdfs:label "correlated gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -3537,7 +3548,7 @@ biolink:CorrelatedGeneToDiseaseAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3556,10 +3567,10 @@ biolink:DiseaseOrPhenotypicFeatureExposure a owl:Class ; rdfs:label "disease or phenotypic feature exposure" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathologicalEntityMixin ], + owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent ], + owl:someValuesFrom biolink:PathologicalEntityMixin ], biolink:Attribute ; skos:definition "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; skos:inScheme . @@ -3567,14 +3578,11 @@ biolink:DiseaseOrPhenotypicFeatureExposure a owl:Class ; biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; rdfs:label "disease or phenotypic feature to genetic inheritance association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -3584,9 +3592,12 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom biolink:GeneticInheritance ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; skos:inScheme . @@ -3594,17 +3605,17 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a owl:Class ; rdfs:label "disease or phenotypic feature to location association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; skos:inScheme . @@ -3613,10 +3624,10 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; rdfs:label "disease to exposure event association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin ], + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], biolink:Association ; skos:definition "An association between an exposure event and a disease." ; skos:inScheme . @@ -3624,28 +3635,28 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; biolink:DiseaseToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "disease to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:subject ], biolink:Association ; skos:closeMatch dcid:DiseaseSymptomAssociation ; @@ -3698,11 +3709,11 @@ biolink:DrugToEntityAssociationMixin a owl:Class ; biolink:DrugToGeneAssociation a owl:Class ; rdfs:label "drug to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DrugToEntityAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DrugToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], @@ -3746,49 +3757,49 @@ biolink:DrugToGeneInteractionExposure a owl:Class ; biolink:DruggableGeneToDiseaseAssociation a owl:Class ; rdfs:label "druggable gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; - owl:onProperty biolink:has_evidence ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], biolink:GeneToDiseaseAssociation ; skos:inScheme . biolink:EntityToDiseaseAssociation a owl:Class ; rdfs:label "entity to disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:MaxResearchPhaseEnum ; + owl:onProperty biolink:max_research_phase ], + [ a owl:Restriction ; owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:max_research_phase ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MaxResearchPhaseEnum ; - owl:onProperty biolink:max_research_phase ], + owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], @@ -3797,7 +3808,7 @@ biolink:EntityToDiseaseAssociation a owl:Class ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:clinical_approval_status ], + owl:onProperty biolink:max_research_phase ], biolink:Association ; skos:inScheme . @@ -3816,22 +3827,22 @@ biolink:EntityToOutcomeAssociationMixin a owl:Class ; biolink:EntityToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "entity to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MaxResearchPhaseEnum ; - owl:onProperty biolink:max_research_phase ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:clinical_approval_status ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MaxResearchPhaseEnum ; owl:onProperty biolink:max_research_phase ], biolink:Association ; skos:inScheme . @@ -3873,9 +3884,6 @@ biolink:Event a owl:Class ; biolink:ExonToTranscriptRelationship a owl:Class ; rdfs:label "exon to transcript relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Transcript ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; @@ -3884,6 +3892,9 @@ biolink:ExonToTranscriptRelationship a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Transcript ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -3897,22 +3908,22 @@ biolink:ExonToTranscriptRelationship a owl:Class ; biolink:ExposureEventToOutcomeAssociation a owl:Class ; rdfs:label "exposure event to outcome association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:temporal_context_qualifier ], - [ a owl:Restriction ; owl:allValuesFrom biolink:time_type ; owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:maxCardinality 1 ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:temporal_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -3924,17 +3935,17 @@ biolink:ExposureEventToOutcomeAssociation a owl:Class ; biolink:ExposureEventToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "exposure event to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:ExposureEvent ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], biolink:Association ; skos:definition "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; skos:inScheme . @@ -3992,119 +4003,101 @@ biolink:Fungus a owl:Class ; biolink:GeneAffectsChemicalAssociation a owl:Class ; rdfs:label "gene affects chemical association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:minCardinality 0 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; owl:onProperty biolink:subject_form_or_variant_qualifier ], @@ -4112,56 +4105,74 @@ biolink:GeneAffectsChemicalAssociation a owl:Class ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; skos:inScheme . @@ -4169,19 +4180,19 @@ biolink:GeneAffectsChemicalAssociation a owl:Class ; biolink:GeneAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "gene as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -4189,40 +4200,40 @@ biolink:GeneAsAModelOfDiseaseAssociation a owl:Class ; biolink:GeneHasVariantThatContributesToDiseaseAssociation a owl:Class ; rdfs:label "gene has variant that contributes to disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_form_or_variant_qualifier ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -4491,23 +4502,11 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; rdfs:label "gene to expression site association" ; rdfs:seeAlso ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:LifeStage ; owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:quantifier_qualifier ], @@ -4515,26 +4514,38 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:LifeStage ; - owl:onProperty biolink:stage_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:quantifier_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; skos:editorialNote "TBD: introduce subclasses for distinction between wild-type and experimental conditions?" ; @@ -4543,17 +4554,17 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; biolink:GeneToGeneCoexpressionAssociation a owl:Class ; rdfs:label "gene to gene coexpression association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneExpressionMixin ], biolink:GeneToGeneAssociation ; skos:definition "Indicates that two genes are co-expressed, generally under the same conditions." ; skos:inScheme . @@ -4561,14 +4572,11 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; biolink:GeneToGeneFamilyAssociation a owl:Class ; rdfs:label "gene to gene family association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneFamily ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -4579,14 +4587,17 @@ biolink:GeneToGeneFamilyAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneFamily ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; skos:inScheme . @@ -4594,32 +4605,32 @@ biolink:GeneToGeneFamilyAssociation a owl:Class ; biolink:GeneToGeneHomologyAssociation a owl:Class ; rdfs:label "gene to gene homology association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:GeneToGeneAssociation ; skos:definition "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; skos:inScheme . @@ -4627,32 +4638,32 @@ biolink:GeneToGeneHomologyAssociation a owl:Class ; biolink:GeneToGeneProductRelationship a owl:Class ; rdfs:label "gene to gene product relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneProductMixin ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneProductMixin ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is transcribed and potentially translated to a gene product" ; skos:inScheme . @@ -4660,14 +4671,14 @@ biolink:GeneToGeneProductRelationship a owl:Class ; biolink:GeneToGoTermAssociation a owl:Class ; rdfs:label "gene to go term association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -4675,8 +4686,8 @@ biolink:GeneToGoTermAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:altLabel "functional association" ; skos:exactMatch WBVocab:Gene-GO-Association ; @@ -4685,17 +4696,17 @@ biolink:GeneToGoTermAssociation a owl:Class ; biolink:GeneToPathwayAssociation a owl:Class ; rdfs:label "gene to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Pathway ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -4703,8 +4714,8 @@ biolink:GeneToPathwayAssociation a owl:Class ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An interaction between a gene or gene product and a biological process or pathway." ; skos:inScheme . @@ -4712,11 +4723,14 @@ biolink:GeneToPathwayAssociation a owl:Class ; biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], @@ -4724,17 +4738,14 @@ biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:exactMatch WBVocab:Gene-Phenotype-Association ; skos:inScheme . @@ -4762,19 +4773,19 @@ biolink:GenomicBackgroundExposure a owl:Class ; rdfs:label "genomic background exposure" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], @@ -4785,49 +4796,49 @@ biolink:GenomicBackgroundExposure a owl:Class ; biolink:GenotypeAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "genotype as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], - [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:GenotypeToDiseaseAssociation ; skos:inScheme . biolink:GenotypeToGeneAssociation a owl:Class ; rdfs:label "genotype to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -4838,14 +4849,14 @@ biolink:GenotypeToGeneAssociation a owl:Class ; biolink:GenotypeToGenotypePartAssociation a owl:Class ; rdfs:label "genotype to genotype part association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], @@ -4853,14 +4864,14 @@ biolink:GenotypeToGenotypePartAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -4871,29 +4882,29 @@ biolink:GenotypeToGenotypePartAssociation a owl:Class ; biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "genotype to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], biolink:Association ; skos:definition "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; skos:inScheme . @@ -4901,32 +4912,32 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; biolink:GenotypeToVariantAssociation a owl:Class ; rdfs:label "genotype to variant association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Any association between a genotype and a sequence variant." ; skos:inScheme . @@ -4968,10 +4979,10 @@ biolink:GeographicLocationAtTime a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:time_type ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; + owl:minCardinality 0 ; owl:onProperty biolink:timepoint ], biolink:GeographicLocation ; skos:definition "a location that can be described in lat/long coordinates, for a particular time" ; @@ -4993,13 +5004,13 @@ biolink:Haplotype a owl:Class ; rdfs:label "haplotype" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:OntologyClass ], biolink:BiologicalEntity ; skos:definition "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; skos:exactMatch , @@ -5030,20 +5041,8 @@ biolink:Human a owl:Class ; biolink:InformationContentEntityToNamedThingAssociation a owl:Class ; rdfs:label "information content entity to named thing association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -5051,11 +5050,23 @@ biolink:InformationContentEntityToNamedThingAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; skos:inScheme . @@ -5104,17 +5115,17 @@ biolink:MacromolecularComplex a owl:Class ; biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; rdfs:label "macromolecular machine to biological process association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalProcess ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], + owl:allValuesFrom biolink:BiologicalProcess ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; skos:inScheme . @@ -5122,14 +5133,14 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; rdfs:label "macromolecular machine to cellular component association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:CellularComponent ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:CellularComponent ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -5140,16 +5151,16 @@ biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; biolink:MacromolecularMachineToMolecularActivityAssociation a owl:Class ; rdfs:label "macromolecular machine to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; @@ -5158,15 +5169,6 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a owl:Class ; biolink:MaterialSampleDerivationAssociation a owl:Class ; rdfs:label "material sample derivation association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; @@ -5177,9 +5179,18 @@ biolink:MaterialSampleDerivationAssociation a owl:Class ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -5192,10 +5203,10 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "material sample to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], biolink:Association ; skos:definition "An association between a material sample and a disease or phenotype." ; skos:inScheme . @@ -5248,21 +5259,21 @@ biolink:MolecularActivityToChemicalEntityAssociation a owl:Class ; rdfs:label "molecular activity to chemical entity association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; @@ -5271,23 +5282,23 @@ biolink:MolecularActivityToChemicalEntityAssociation a owl:Class ; biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; rdfs:label "molecular activity to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; skos:inScheme . @@ -5295,31 +5306,31 @@ biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; biolink:MolecularActivityToPathwayAssociation a owl:Class ; rdfs:label "molecular activity to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "Association that holds the relationship between a reaction and the pathway it participates in." ; @@ -5329,49 +5340,76 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a owl:Class ; rdfs:label "named thing associated with likelihood of named thing association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], biolink:Association ; skos:inScheme . @@ -5386,13 +5424,13 @@ biolink:NucleosomeModification a owl:Class ; rdfs:label "nucleosome modification" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:GeneProductIsoformMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductIsoformMixin ], + owl:someValuesFrom biolink:EpigenomicEntity ], biolink:BiologicalEntity ; skos:definition "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; skos:inScheme . @@ -5406,76 +5444,76 @@ biolink:ObservedExpectedFrequencyAnalysisResult a owl:Class ; biolink:OrganismTaxonToEnvironmentAssociation a owl:Class ; rdfs:label "organism taxon to environment association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:inScheme . biolink:OrganismTaxonToOrganismTaxonInteraction a owl:Class ; rdfs:label "organism taxon to organism taxon interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:associated_environmental_context ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; skos:inScheme . @@ -5483,32 +5521,32 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a owl:Class ; biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; rdfs:label "organism taxon to organism taxon specialization" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; skos:inScheme . @@ -5519,16 +5557,16 @@ biolink:OrganismToOrganismAssociation a owl:Class ; owl:allValuesFrom biolink:IndividualOrganism ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:IndividualOrganism ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:IndividualOrganism ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -5542,67 +5580,67 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismalEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:allValuesFrom biolink:OrganismalEntity ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . biolink:PairwiseMolecularInteraction a owl:Class ; rdfs:label "pairwise molecular interaction" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:interacting_molecules_category ], + [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:interacting_molecules_category ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:interacting_molecules_category ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], biolink:PairwiseGeneToGeneInteraction ; skos:definition "An interaction at the molecular level between two physical entities" ; skos:inScheme . @@ -5694,17 +5732,17 @@ biolink:Phenomenon a owl:Class ; biolink:PhenotypicFeatureToDiseaseAssociation a owl:Class ; rdfs:label "phenotypic feature to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin ], @@ -5761,32 +5799,32 @@ biolink:Plant a owl:Class ; biolink:PopulationToPopulationAssociation a owl:Class ; rdfs:label "population to population association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a two populations" ; skos:inScheme . @@ -5803,194 +5841,194 @@ biolink:PosttranslationalModification a owl:Class ; biolink:PredicateMapping a owl:Class ; rdfs:label "predicate mapping" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:object_derivative_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:exact_match ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:mapped_predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:exact_match ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:exact_match ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_part_qualifier ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:broad_match ], linkml:ClassDefinition ; skos:definition "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; skos:inScheme . @@ -6029,10 +6067,10 @@ biolink:ProteinFamily a owl:Class ; rdfs:label "protein family" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:exactMatch , WIKIDATA:Q2278983 ; @@ -6093,13 +6131,13 @@ biolink:RNAProductIsoform a owl:Class ; biolink:ReactionToCatalystAssociation a owl:Class ; rdfs:label "reaction to catalyst association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], biolink:ReactionToParticipantAssociation ; skos:inScheme . @@ -6108,10 +6146,10 @@ biolink:ReagentTargetedGene a owl:Class ; rdfs:label "reagent targeted gene" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], @@ -6161,22 +6199,22 @@ biolink:SequenceEnum a owl:Class ; biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; rdfs:label "sequence variant modulates treatment association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Treatment ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Treatment ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; @@ -6186,38 +6224,29 @@ biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; biolink:Serial a owl:Class ; rdfs:label "serial" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:iso_abbreviation ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:issue ], + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:type ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:iso_abbreviation ], + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:issue ], @@ -6225,8 +6254,17 @@ biolink:Serial a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:volume ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:iso_abbreviation ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:iso_abbreviation ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:issue ], biolink:Publication ; skos:altLabel "journal" ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; @@ -6286,14 +6324,14 @@ biolink:Snv a owl:Class ; biolink:SocioeconomicExposure a owl:Class ; rdfs:label "socioeconomic exposure" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:SocioeconomicAttribute ; - owl:onProperty biolink:has_attribute ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent ], + owl:allValuesFrom biolink:SocioeconomicAttribute ; + owl:onProperty biolink:has_attribute ], biolink:Attribute ; skos:definition "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; skos:inScheme . @@ -6345,23 +6383,23 @@ biolink:StudyVariable a owl:Class ; biolink:TaxonToTaxonAssociation a owl:Class ; rdfs:label "taxon to taxon association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -6381,22 +6419,22 @@ biolink:TextMiningResult a owl:Class ; biolink:TranscriptToGeneRelationship a owl:Class ; rdfs:label "transcript to gene relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Transcript ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Transcript ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is a collection of transcripts" ; @@ -6406,16 +6444,16 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; rdfs:label "transcription factor binding site" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:RegulatoryRegion ; skos:altLabel "binding site", "tf binding site" ; @@ -6428,15 +6466,15 @@ biolink:VariantAsAModelOfDiseaseAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], @@ -6449,14 +6487,14 @@ biolink:VariantToGeneExpressionAssociation a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneExpressionMixin ], biolink:VariantToGeneAssociation ; skos:definition "An association between a variant and expression of a gene (i.e. e-QTL)" ; skos:inScheme . @@ -6464,20 +6502,20 @@ biolink:VariantToGeneExpressionAssociation a owl:Class ; biolink:VariantToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "variant to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -6485,25 +6523,19 @@ biolink:VariantToPopulationAssociation a owl:Class ; rdfs:label "variant to population association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_count ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_total ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quotient ], + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -6511,32 +6543,38 @@ biolink:VariantToPopulationAssociation a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:has_count ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:has_total ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQualifierMixin ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:FrequencyQuantifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], + owl:onProperty biolink:has_total ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQualifierMixin ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_quotient ], biolink:Association ; skos:definition "An association between a variant and a population, where the variant has particular frequency in the population" ; skos:inScheme . @@ -7096,11 +7134,8 @@ biolink:AdministrativeEntity a owl:Class ; biolink:Article a owl:Class ; rdfs:label "article" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:issue ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:maxCardinality 1 ; + owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:published_in ], @@ -7110,6 +7145,9 @@ biolink:Article a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:iso_abbreviation ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:issue ], @@ -7118,19 +7156,19 @@ biolink:Article a owl:Class ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:published_in ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:issue ], + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:iso_abbreviation ], + owl:minCardinality 0 ; + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:volume ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:issue ], biolink:Publication ; skos:definition "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; skos:exactMatch fabio:article, @@ -7141,10 +7179,10 @@ biolink:Behavior a owl:Class ; rdfs:label "behavior" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ActivityAndBehavior ], biolink:BiologicalProcess ; skos:exactMatch STY:T053, ; @@ -7163,14 +7201,20 @@ biolink:BehavioralFeature a owl:Class ; biolink:BookChapter a owl:Class ; rdfs:label "book chapter" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:volume ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:volume ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:published_in ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:chapter ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:chapter ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:chapter ], @@ -7182,12 +7226,6 @@ biolink:BookChapter a owl:Class ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:chapter ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:published_in ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:volume ], biolink:Publication ; skos:inScheme . @@ -7206,10 +7244,13 @@ biolink:Case a owl:Class ; biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "cell line to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -7217,9 +7258,6 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:CellLineToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; skos:inScheme . @@ -7241,12 +7279,12 @@ biolink:ChemicalExposure a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom biolink:QuantityValue ; owl:onProperty biolink:has_quantitative_value ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_quantitative_value ], biolink:Attribute ; skos:definition "A chemical exposure is an intake of a particular chemical entity." ; skos:exactMatch ECTO:9000000, @@ -7256,29 +7294,29 @@ biolink:ChemicalExposure a owl:Class ; biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical or drug or treatment to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; + owl:onProperty biolink:FDA_adverse_event_level ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:FDA_adverse_event_level ], + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; skos:inScheme . @@ -7422,77 +7460,77 @@ biolink:GeneFamily a owl:Class ; biolink:GenomicSequenceLocalization a owl:Class ; rdfs:label "genomic sequence localization" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:start_interbase_coordinate ], + owl:minCardinality 0 ; + owl:onProperty biolink:phase ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:StrandEnum ; + owl:onProperty biolink:strand ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:StrandEnum ; - owl:onProperty biolink:genome_build ], + owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:end_interbase_coordinate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:StrandEnum ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:start_interbase_coordinate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:genome_build ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:genome_build ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PhaseEnum ; owl:onProperty biolink:phase ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:phase ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:start_interbase_coordinate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:phase ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:strand ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:StrandEnum ; owl:onProperty biolink:genome_build ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhaseEnum ; - owl:onProperty biolink:phase ], + owl:minCardinality 0 ; + owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:strand ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:end_interbase_coordinate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:SequenceAssociation ; skos:broadMatch dcid:Chromosome ; skos:definition "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; @@ -7503,25 +7541,19 @@ biolink:GenotypeToDiseaseAssociation a owl:Class ; rdfs:label "genotype to disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], @@ -7530,10 +7562,16 @@ biolink:GenotypeToDiseaseAssociation a owl:Class ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7546,22 +7584,22 @@ biolink:GenotypeToEntityAssociationMixin a owl:Class ; biolink:GeographicLocation a owl:Class ; rdfs:label "geographic location" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:float ; owl:onProperty biolink:longitude ], [ a owl:Restriction ; owl:allValuesFrom xsd:float ; owl:onProperty biolink:latitude ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:latitude ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:longitude ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:latitude ], [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; + owl:maxCardinality 1 ; owl:onProperty biolink:longitude ], biolink:PlanetaryEntity ; skos:definition "a location that can be described in lat/long coordinates" ; @@ -7588,6 +7626,13 @@ biolink:MolecularMixture a owl:Class ; skos:definition "A molecular mixture is a chemical mixture composed of two or more molecular entities with known concentration and stoichiometry." ; skos:inScheme . +biolink:Onset a owl:Class ; + rdfs:label "onset" ; + rdfs:subClassOf biolink:ClinicalCourse ; + skos:definition "The age group in which (disease) symptom manifestations appear" ; + skos:exactMatch ; + skos:inScheme . + biolink:OrganismAttribute a owl:Class ; rdfs:label "organism attribute" ; rdfs:subClassOf biolink:Attribute ; @@ -7607,10 +7652,10 @@ biolink:PairwiseGeneToGeneInteraction a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], biolink:GeneToGeneAssociation ; skos:definition "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; @@ -7621,10 +7666,10 @@ biolink:Polypeptide a owl:Class ; rdfs:label "polypeptide" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:altLabel "amino acid entity" ; skos:definition "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; @@ -7636,29 +7681,17 @@ biolink:Polypeptide a owl:Class ; biolink:ReactionToParticipantAssociation a owl:Class ; rdfs:label "reaction to participant association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ReactionSideEnum ; - owl:onProperty biolink:reaction_side ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:stoichiometry ], + owl:allValuesFrom biolink:ReactionDirectionEnum ; + owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:stoichiometry ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:reaction_direction ], @@ -7666,11 +7699,23 @@ biolink:ReactionToParticipantAssociation a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ReactionDirectionEnum ; - owl:onProperty biolink:reaction_direction ], + owl:maxCardinality 1 ; + owl:onProperty biolink:reaction_side ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ReactionSideEnum ; + owl:onProperty biolink:reaction_side ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:reaction_direction ], + owl:onProperty biolink:stoichiometry ], biolink:ChemicalToChemicalAssociation ; skos:inScheme . @@ -7680,6 +7725,12 @@ biolink:SequenceAssociation a owl:Class ; skos:definition "An association between a sequence feature and a nucleic acid entity it is localized to." ; skos:inScheme . +biolink:SeverityValue a owl:Class ; + rdfs:label "severity value" ; + rdfs:subClassOf biolink:Attribute ; + skos:definition "describes the severity of a phenotypic feature or disease" ; + skos:inScheme . + biolink:SocioeconomicAttribute a owl:Class ; rdfs:label "socioeconomic attribute" ; rdfs:subClassOf biolink:Attribute ; @@ -7696,11 +7747,14 @@ biolink:StudyPopulation a owl:Class ; biolink:Treatment a owl:Class ; rdfs:label "treatment" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_drug ], + owl:allValuesFrom biolink:Procedure ; + owl:onProperty biolink:has_procedure ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Device ; owl:onProperty biolink:has_device ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Drug ; + owl:onProperty biolink:has_drug ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], @@ -7708,16 +7762,13 @@ biolink:Treatment a owl:Class ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Device ; - owl:onProperty biolink:has_device ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; + owl:minCardinality 0 ; owl:onProperty biolink:has_drug ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_procedure ], + owl:onProperty biolink:has_device ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Procedure ; + owl:minCardinality 0 ; owl:onProperty biolink:has_procedure ], biolink:NamedThing ; skos:altLabel "medical action", @@ -7732,12 +7783,21 @@ biolink:VariantToDiseaseAssociation a owl:Class ; rdfs:label "variant to disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; @@ -7746,23 +7806,14 @@ biolink:VariantToDiseaseAssociation a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7773,23 +7824,23 @@ biolink:VariantToGeneAssociation a owl:Class ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; skos:inScheme . @@ -7813,7 +7864,7 @@ biolink:affects_likelihood_of a owl:DatatypeProperty ; rdfs:label "affects likelihood of" ; rdfs:subPropertyOf biolink:related_to_at_instance_level ; skos:definition "Holds between two entities where the presence or application of one alters the chance that the other will come to be." ; - skos:editorialNote "This predicate implies causation, where the 'affected' entity is something that does not yet exist, and the actions/execution of effector impact the likelihood that this entity may come to be. It is NOT to be used for a statistical associations that describe correlations between two feature variables (use predicates in the 'associated with likelihood of' hierarchy here.)" ; + skos:editorialNote "- This predicate implies causation, where the 'affected' entity is something that does not yet exist, and the actions/execution of effector impact the likelihood that this entity may come to be. It is NOT to be used for a statistical associations that describe correlations between two feature variables (use predicates in the 'associated with likelihood of' hierarchy here.)" ; skos:inScheme ; biolink:canonical_predicate true . @@ -8222,16 +8273,6 @@ biolink:phenotypic_state a owl:ObjectProperty ; skos:definition "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; skos:inScheme . -biolink:population_context_qualifier a owl:ObjectProperty ; - rdfs:label "population context qualifier" ; - rdfs:range biolink:PopulationOfIndividualOrganisms ; - rdfs:subPropertyOf biolink:qualifier ; - skos:definition "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; - skos:inScheme . - -biolink:predicate_type a rdfs:Datatype ; - owl:equivalentClass xsd:anyURI . - biolink:primary_knowledge_source a owl:DatatypeProperty ; rdfs:label "primary knowledge source" ; rdfs:subPropertyOf biolink:knowledge_source ; @@ -8306,11 +8347,6 @@ biolink:start_interbase_coordinate a owl:DatatypeProperty ; skos:inScheme ; biolink:opposite_of "end interbase coordinate" . -biolink:statement_qualifier a owl:DatatypeProperty ; - rdfs:label "statement qualifier" ; - rdfs:subPropertyOf biolink:qualifier ; - skos:inScheme . - biolink:stoichiometry a owl:DatatypeProperty ; rdfs:label "stoichiometry" ; rdfs:range xsd:integer ; @@ -8333,7 +8369,7 @@ biolink:studied_to_treat a owl:ObjectProperty ; rdfs:subPropertyOf biolink:related_to_at_instance_level, biolink:treats_or_applied_or_studied_to_treat ; skos:definition "Holds between an substance, procedure, or activity and a medical condition, and reports that one or more scientific study has been performed to specifically test the potential of the substance, procedure, or activity to treat the medical condition (i.e. to ameliorate, stabilize, or cure the condition, or to delay, prevent, or reduce the risk of it manifesting in the first place)." ; - skos:editorialNote "Predicates in this hierarchy are used in practice when a source reports performance of a study, but there is not sufficient evidence or demonstrated efficacy against the condition to warrant creating a ‘treats’ assertion edge. Note however that a 'studied to treat' edge may be used as evidence to support creation of a separate 'treats' prediction edge. A knowledge level of Observation MUST be used with this predicate (because it is merely reporting that a study was observed to have been performed)." ; + skos:editorialNote "Predicates in this hierarchy are used in practice when a source reports performance of a study, but there is not sufficient evidence or demonstrated efficacy against the condition to warrant creating a ‘treats’ assertion edge. Note however that a 'studied to treat' edge may be used as evidence to support creation of a separate 'treats' prediction edge." ; skos:inScheme ; biolink:canonical_predicate true . @@ -8395,7 +8431,6 @@ biolink:treats a owl:ObjectProperty ; WIKIDATA_PROPERTY:P2175 ; skos:definition "Holds between an intervention (substance, procedure, or activity) and a medical condition (disease or phenotypic feature), and states that the intervention is able to ameliorate, stabilize, or cure the condition or delay, prevent, or reduce the risk of it manifesting in the first place. ‘Treats’ edges should be asserted (knowledge_level: assertion) only in cases where there is strong supporting evidence - i.e. the intervention is approved or in phase 4 trials for the condition, or is an otherwise established treatment in the medical community (e.g. a widely-accepted or formally recommended off-label use). In the absence of such evidence, weaker predicates should be used in asserted edges (e.g. ‘in clinical trials for’ or ‘beneficial in models of’). ‘Treats’ edges based on weaker or indirect forms of evidence can however be created as predictions (knowledge_level: prediction) and should point to the more foundational asserted edges that support them." ; skos:exactMatch , - SEMMEDDB:TREATS, WIKIDATA_PROPERTY:P2175 ; skos:inScheme ; skos:narrowMatch REPODB:clinically_tested_approved_unknown_phase, @@ -8441,23 +8476,23 @@ biolink:ActivityAndBehavior a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -8489,17 +8524,35 @@ biolink:ChemicalRole a owl:Class ; biolink:ChemicalToChemicalAssociation a owl:Class ; rdfs:label "chemical to chemical association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; skos:inScheme . @@ -8582,55 +8635,55 @@ biolink:FrequencyQuantifier a owl:Class ; biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:Association ; skos:inScheme ; @@ -8679,25 +8732,25 @@ biolink:NoncodingRNAProduct a owl:Class ; biolink:OrganismTaxonToOrganismTaxonAssociation a owl:Class ; rdfs:label "organism taxon to organism taxon association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "A relationship between two organism taxon nodes" ; @@ -8749,13 +8802,13 @@ biolink:RegulatoryRegion a owl:Class ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:altLabel "regulatory element" ; skos:definition "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; @@ -9043,6 +9096,12 @@ biolink:qualifiers a owl:ObjectProperty ; skos:definition "connects an association to qualifiers that modify or qualify the meaning of that association" ; skos:inScheme . +biolink:statement_qualifier a owl:DatatypeProperty ; + rdfs:label "statement qualifier" ; + rdfs:subPropertyOf biolink:qualifier ; + skos:definition "A property that qualifies the entirety of the statement made in an association. It applies to both a fully qualified subject and a fully qualified object as well as the predicate and qualified predicate in an association." ; + skos:inScheme . + biolink:temporal_context_qualifier a owl:DatatypeProperty ; rdfs:label "temporal context qualifier" ; rdfs:range biolink:time_type ; @@ -9071,13 +9130,13 @@ biolink:CellularComponent a owl:Class ; biolink:DatasetDistribution a owl:Class ; rdfs:label "dataset distribution" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:distribution_download_url ], biolink:InformationContentEntity ; skos:definition "an item that holds distribution level information about a dataset." ; @@ -9090,20 +9149,20 @@ biolink:DatasetSummary a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:source_logo ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:source_web_page ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_logo ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:source_logo ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:source_web_page ], biolink:InformationContentEntity ; skos:definition "an item that holds summary level information about a dataset." ; skos:inScheme . @@ -9125,23 +9184,23 @@ biolink:GeneProductIsoformMixin a owl:Class ; biolink:GeneToGeneAssociation a owl:Class ; rdfs:label "gene to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], biolink:Association ; skos:altLabel "molecular or genetic interaction" ; skos:definition "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; @@ -9180,13 +9239,6 @@ biolink:LifeStage a owl:Class ; skos:inScheme ; skos:narrowMatch HsapDv:0000000 . -biolink:Onset a owl:Class ; - rdfs:label "onset" ; - rdfs:subClassOf biolink:ClinicalCourse ; - skos:definition "The age group in which (disease) symptom manifestations appear" ; - skos:exactMatch ; - skos:inScheme . - biolink:Pathway a owl:Class ; rdfs:label "pathway" ; rdfs:subClassOf [ a owl:Restriction ; @@ -9234,18 +9286,18 @@ biolink:QuantityValue a owl:Class ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:has_numeric_value ], + [ a owl:Restriction ; + owl:allValuesFrom ; owl:onProperty biolink:has_unit ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_numeric_value ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:has_unit ], [ a owl:Restriction ; owl:allValuesFrom xsd:double ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; - owl:allValuesFrom ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_unit ], biolink:Annotation ; skos:definition "A value of an attribute that is quantitative and measurable, expressed as a combination of a unit and a numeric value" ; @@ -9254,16 +9306,10 @@ biolink:QuantityValue a owl:Class ; biolink:SequenceFeatureRelationship a owl:Class ; rdfs:label "sequence feature relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -9271,17 +9317,17 @@ biolink:SequenceFeatureRelationship a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "For example, a particular exon is part of a particular transcript or gene" ; skos:exactMatch CHADO:feature_relationship ; skos:inScheme . -biolink:SeverityValue a owl:Class ; - rdfs:label "severity value" ; - rdfs:subClassOf biolink:Attribute ; - skos:definition "describes the severity of a phenotypic feature or disease" ; - skos:inScheme . - biolink:VariantToEntityAssociationMixin a owl:Class ; rdfs:label "variant to entity association mixin" ; rdfs:subClassOf ; @@ -9390,29 +9436,29 @@ biolink:ClinicalAttribute a owl:Class ; biolink:DatasetVersion a owl:Class ; rdfs:label "dataset version" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Dataset ; - owl:onProperty biolink:has_dataset ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:ingest_date ], + owl:allValuesFrom biolink:DatasetDistribution ; + owl:onProperty biolink:has_distribution ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Dataset ; + owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:ingest_date ], + owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_distribution ], + owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_distribution ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DatasetDistribution ; - owl:onProperty biolink:has_distribution ], + owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_dataset ], @@ -9444,23 +9490,23 @@ biolink:FDAIDAAdverseEventEnum a owl:Class ; biolink:FunctionalAssociation a owl:Class ; rdfs:label "functional association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom biolink:MacromolecularMachineMixin ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; skos:inScheme . @@ -9629,13 +9675,7 @@ biolink:max_research_phase a owl:ObjectProperty ; biolink:object_derivative_qualifier a owl:DatatypeProperty ; rdfs:label "object derivative qualifier" ; rdfs:subPropertyOf biolink:derivative_qualifier ; - skos:inScheme . - -biolink:onset_qualifier a owl:ObjectProperty ; - rdfs:label "onset qualifier" ; - rdfs:range biolink:Onset ; - rdfs:subPropertyOf biolink:qualifier ; - skos:definition "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + skos:definition "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; skos:inScheme . biolink:participates_in a owl:ObjectProperty ; @@ -9661,6 +9701,13 @@ biolink:participates_in a owl:ObjectProperty ; RO:0002505, . +biolink:population_context_qualifier a owl:ObjectProperty ; + rdfs:label "population context qualifier" ; + rdfs:range biolink:PopulationOfIndividualOrganisms ; + rdfs:subPropertyOf biolink:qualifier ; + skos:definition "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + skos:inScheme . + biolink:published_in a owl:DatatypeProperty ; rdfs:label "published in" ; rdfs:domain biolink:Publication ; @@ -9801,13 +9848,6 @@ biolink:related_to a owl:ObjectProperty, CPT:mapped_to ; biolink:canonical_predicate true . -biolink:severity_qualifier a owl:ObjectProperty ; - rdfs:label "severity qualifier" ; - rdfs:range biolink:SeverityValue ; - rdfs:subPropertyOf biolink:qualifier ; - skos:definition "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - skos:inScheme . - biolink:sex_qualifier a owl:ObjectProperty ; rdfs:label "sex qualifier" ; rdfs:range biolink:BiologicalSex ; @@ -9818,7 +9858,7 @@ biolink:sex_qualifier a owl:ObjectProperty ; biolink:stage_qualifier a owl:ObjectProperty ; rdfs:label "stage qualifier" ; rdfs:range biolink:LifeStage ; - rdfs:subPropertyOf biolink:association_slot ; + rdfs:subPropertyOf biolink:statement_qualifier ; skos:definition "stage during which gene or protein expression of takes place." ; skos:inScheme . @@ -9835,6 +9875,7 @@ biolink:treats_or_applied_or_studied_to_treat a owl:DatatypeProperty ; rdfs:label "treats or applied or studied to treat" ; skos:definition "Holds between an substance, procedure, or activity and a medical condition (disease or phenotypic feature), and states that the substance, procedure, or activity is able to treat the condition, has been observed to be taken/prescribed in practice with the intent of treating the condition, or has been interrogated in a scientific study that hypothesized an ability to treat the condition (in humans or other biological systems/organisms)." ; skos:editorialNote "This predicate is helpful both as a grouping predicate to aid in searching for broader senses of treating a condition, and as a catch-all for representing sources that are not clear about the sense of treats that is being reported. For example, text-mined statements concerning treatments for disease are based on sentences that can report treatment in any of these different senses and thus require a broader predicate such as this to safely report statement semantics." ; + skos:exactMatch SEMMEDDB:TREATS ; skos:inScheme ; biolink:canonical_predicate true . @@ -9876,29 +9917,29 @@ biolink:GeneProductMixin a owl:Class ; biolink:GeneToDiseaseAssociation a owl:Class ; rdfs:label "gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:closeMatch dcid:DiseaseGeneAssociation ; skos:exactMatch SIO:000983 ; @@ -9908,8 +9949,11 @@ biolink:GeneToDiseaseAssociation a owl:Class ; biolink:MolecularActivity a owl:Class ; rdfs:label "molecular activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MacromolecularMachineMixin ; - owl:onProperty biolink:enabled_by ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_output ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_output ], @@ -9917,29 +9961,26 @@ biolink:MolecularActivity a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:has_output ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MacromolecularMachineMixin ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_input ], + owl:maxCardinality 1 ; + owl:onProperty biolink:enabled_by ], biolink:BiologicalProcessOrActivity ; skos:altLabel "molecular event", "molecular function", @@ -9959,20 +10000,26 @@ biolink:PhysicalEssenceOrOccurrent a owl:Class ; biolink:RetrievalSource a owl:Class ; rdfs:label "retrieval source" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], + [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:resource_role ], + owl:onProperty biolink:resource_id ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:resource_role ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:upstream_resource_ids ], + owl:onProperty biolink:resource_role ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:upstream_resource_ids ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:resource_role ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:resource_id ], @@ -9980,17 +10027,11 @@ biolink:RetrievalSource a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:resource_id ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:resource_id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:resource_role ], + owl:onProperty biolink:upstream_resource_ids ], biolink:InformationContentEntity ; skos:definition "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; skos:inScheme . @@ -10079,34 +10120,34 @@ biolink:has_sequence_variant a owl:ObjectProperty ; biolink:ChemicalMixture a owl:Class ; rdfs:label "chemical mixture" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalMixture ; - owl:onProperty biolink:is_supplement ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:highest_FDA_approval_status ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:highest_FDA_approval_status ], + owl:onProperty biolink:routes_of_delivery ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:is_supplement ], + owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:is_supplement ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:routes_of_delivery ], + owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; + owl:onProperty biolink:highest_FDA_approval_status ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalMixture ; + owl:onProperty biolink:is_supplement ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:highest_FDA_approval_status ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; owl:allValuesFrom biolink:DrugDeliveryEnum ; @@ -10133,19 +10174,6 @@ biolink:GeneToEntityAssociationMixin a owl:Class ; rdfs:subClassOf ; skos:inScheme . -biolink:PopulationOfIndividualOrganisms a owl:Class ; - rdfs:label "population of individual organisms" ; - rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation ], - biolink:OrganismalEntity ; - skos:definition "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; - skos:exactMatch STY:T098, - , - , - SIO:001061 ; - skos:inScheme . - biolink:StrandEnum a owl:Class ; rdfs:subClassOf linkml:EnumDefinition ; owl:unionOf ( ) ; @@ -10389,65 +10417,65 @@ biolink:Entity a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:deprecated ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom biolink:iri_type ; owl:onProperty biolink:iri ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:deprecated ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:category_type ; - owl:onProperty biolink:category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:category ], + owl:onProperty biolink:description ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:deprecated ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:allValuesFrom biolink:label_type ; owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Attribute ; - owl:onProperty biolink:has_attribute ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:description ], [ a owl:Restriction ; owl:allValuesFrom biolink:narrative_text ; owl:onProperty biolink:description ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:description ], + owl:onProperty biolink:deprecated ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Attribute ; owl:onProperty biolink:has_attribute ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:category_type ; + owl:onProperty biolink:category ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:iri ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:description ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:deprecated ], linkml:ClassDefinition ; skos:definition "Root Biolink Model class for all things and informational relationships, real or imagined." ; skos:inScheme . @@ -10463,23 +10491,23 @@ biolink:EntityToPhenotypicFeatureAssociationMixin a owl:Class ; biolink:Genotype a owl:Class ; rdfs:label "genotype" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:maxCardinality 1 ; + owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:allValuesFrom biolink:Zygosity ; owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_zygosity ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], biolink:BiologicalEntity ; skos:definition "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; skos:exactMatch , @@ -10487,6 +10515,19 @@ biolink:Genotype a owl:Class ; skos:inScheme ; skos:note "Consider renaming as genotypic entity" . +biolink:PopulationOfIndividualOrganisms a owl:Class ; + rdfs:label "population of individual organisms" ; + rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation ], + biolink:OrganismalEntity ; + skos:definition "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; + skos:exactMatch STY:T098, + , + , + SIO:001061 ; + skos:inScheme . + biolink:Transcript a owl:Class ; rdfs:label "transcript" ; rdfs:subClassOf biolink:BiologicalEntity ; @@ -10523,13 +10564,6 @@ biolink:has_biological_sequence a owl:DatatypeProperty ; skos:definition "connects a genomic feature to its sequence" ; skos:inScheme . -biolink:qualified_predicate a owl:DatatypeProperty ; - rdfs:label "qualified predicate" ; - rdfs:subPropertyOf biolink:qualifier ; - skos:definition "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - skos:editorialNote "to express the statement that “Chemical X causes increased expression of Gene Y”, the core triple is read using the fields subject:ChemX, predicate:affects, object:GeneY . . . and the full statement is read using the fields subject:ChemX, qualified_predicate:causes, object:GeneY, object_aspect: expression, object_direction:increased. The predicate ‘affects’ is needed for the core triple reading, but does not make sense in the full statement reading (because “Chemical X affects increased expression of Gene Y'' is not what we mean to say here: it causes increased expression of Gene Y)" ; - skos:inScheme . - biolink:species_context_qualifier a owl:ObjectProperty ; rdfs:label "species context qualifier" ; rdfs:range biolink:OrganismTaxon ; @@ -10538,12 +10572,6 @@ biolink:species_context_qualifier a owl:ObjectProperty ; skos:editorialNote "Ontology CURIEs are expected as values here, the examples below are intended to help clarify the content of the CURIEs." ; skos:inScheme . -biolink:subject_direction_qualifier a owl:ObjectProperty ; - rdfs:label "subject direction qualifier" ; - rdfs:range biolink:DirectionQualifierEnum ; - rdfs:subPropertyOf biolink:direction_qualifier ; - skos:inScheme . - biolink:timepoint a owl:DatatypeProperty ; rdfs:label "timepoint" ; rdfs:range biolink:time_type ; @@ -10639,13 +10667,13 @@ biolink:NucleicAcidEntity a owl:Class ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon ], + owl:someValuesFrom biolink:GenomicEntity ], biolink:MolecularEntity ; skos:altLabel "genomic entity", "sequence feature" ; @@ -10658,14 +10686,14 @@ biolink:NucleicAcidEntity a owl:Class ; biolink:OrganismalEntity a owl:Class ; rdfs:label "organismal entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:has_attribute ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation ], biolink:BiologicalEntity ; skos:definition "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; skos:exactMatch , @@ -10687,29 +10715,28 @@ biolink:anatomical_context_qualifier a owl:DatatypeProperty ; skos:editorialNote "Anatomical context values can be any term from UBERON. For example, the context qualifier ‘cerebral cortext’ combines with a core concept of ‘neuron’ to express the composed concept ‘neuron in the cerebral cortext’. The species_context_qualifier applies taxonomic context, e.g. species-specific molecular activity. Ontology CURIEs are expected as values here, the examples below are intended to help clarify the content of the CURIEs." ; skos:inScheme . -biolink:object_aspect_qualifier a owl:DatatypeProperty ; - rdfs:label "object aspect qualifier" ; - rdfs:subPropertyOf biolink:aspect_qualifier ; - skos:inScheme . - biolink:object_form_or_variant_qualifier a owl:DatatypeProperty ; rdfs:label "object form or variant qualifier" ; rdfs:subPropertyOf biolink:form_or_variant_qualifier ; + skos:definition "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; skos:inScheme . biolink:object_part_qualifier a owl:DatatypeProperty ; rdfs:label "object part qualifier" ; rdfs:subPropertyOf biolink:part_qualifier ; + skos:definition "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; skos:inScheme . biolink:subject_derivative_qualifier a owl:DatatypeProperty ; rdfs:label "subject derivative qualifier" ; rdfs:subPropertyOf biolink:derivative_qualifier ; + skos:definition "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; skos:inScheme . biolink:subject_part_qualifier a owl:DatatypeProperty ; rdfs:label "subject part qualifier" ; rdfs:subPropertyOf biolink:part_qualifier ; + skos:definition "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; skos:inScheme . biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum a owl:Class ; @@ -10762,82 +10789,74 @@ biolink:GeneOrGeneProductOrChemicalPartQualifierEnum a owl:Class ; biolink:BiologicalProcessOrActivity a owl:Class ; rdfs:label "biological process or activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:enabled_by ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhysicalEntity ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_input ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:has_input ], + owl:allValuesFrom biolink:PhysicalEntity ; + owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:has_output ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:enabled_by ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_output ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_output ], biolink:BiologicalEntity ; skos:definition "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; skos:inScheme . -biolink:DirectionQualifierEnum a owl:Class ; - rdfs:subClassOf linkml:EnumDefinition ; - owl:unionOf ( ) ; - linkml:permissible_values , - , - , - . - biolink:Agent a owl:Class ; rdfs:label "agent" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:affiliation ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:affiliation ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:address ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:affiliation ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:address ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:address ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:address ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:name ], @@ -10879,15 +10898,11 @@ biolink:object_context_qualifier a owl:DatatypeProperty ; rdfs:subPropertyOf biolink:context_qualifier ; skos:inScheme . -biolink:object_direction_qualifier a owl:ObjectProperty ; - rdfs:label "object direction qualifier" ; - rdfs:range biolink:DirectionQualifierEnum ; - rdfs:subPropertyOf biolink:direction_qualifier ; - skos:inScheme . - -biolink:subject_aspect_qualifier a owl:DatatypeProperty ; - rdfs:label "subject aspect qualifier" ; - rdfs:subPropertyOf biolink:aspect_qualifier ; +biolink:qualified_predicate a owl:DatatypeProperty ; + rdfs:label "qualified predicate" ; + rdfs:subPropertyOf biolink:qualifier ; + skos:definition "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + skos:editorialNote "to express the statement that “Chemical X causes increased expression of Gene Y”, the core triple is read using the fields subject:ChemX, predicate:affects, object:GeneY . . . and the full statement is read using the fields subject:ChemX, qualified_predicate:causes, object:GeneY, object_aspect: expression, object_direction:increased. The predicate ‘affects’ is needed for the core triple reading, but does not make sense in the full statement reading (because “Chemical X affects increased expression of Gene Y'' is not what we mean to say here: it causes increased expression of Gene Y)" ; skos:inScheme . biolink:subject_context_qualifier a owl:DatatypeProperty ; @@ -10895,9 +10910,17 @@ biolink:subject_context_qualifier a owl:DatatypeProperty ; rdfs:subPropertyOf biolink:context_qualifier ; skos:inScheme . +biolink:subject_direction_qualifier a owl:ObjectProperty ; + rdfs:label "subject direction qualifier" ; + rdfs:range biolink:DirectionQualifierEnum ; + rdfs:subPropertyOf biolink:direction_qualifier ; + skos:definition "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + skos:inScheme . + biolink:subject_form_or_variant_qualifier a owl:DatatypeProperty ; rdfs:label "subject form or variant qualifier" ; rdfs:subPropertyOf biolink:form_or_variant_qualifier ; + skos:definition "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; skos:inScheme . biolink:Occurrent a owl:Class ; @@ -10913,6 +10936,14 @@ biolink:qualifier a owl:DatatypeProperty ; skos:definition "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; skos:inScheme . +biolink:DirectionQualifierEnum a owl:Class ; + rdfs:subClassOf linkml:EnumDefinition ; + owl:unionOf ( ) ; + linkml:permissible_values , + , + , + . + biolink:ExposureEvent a owl:Class ; rdfs:label "exposure event" ; rdfs:subClassOf biolink:OntologyClass ; @@ -10922,6 +10953,12 @@ biolink:ExposureEvent a owl:Class ; skos:exactMatch ; skos:inScheme . +biolink:object_aspect_qualifier a owl:DatatypeProperty ; + rdfs:label "object aspect qualifier" ; + rdfs:subPropertyOf biolink:aspect_qualifier ; + skos:definition "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + skos:inScheme . + biolink:BiologicalProcess a owl:Class ; rdfs:label "biological process" ; rdfs:subClassOf [ a owl:Restriction ; @@ -10941,13 +10978,13 @@ biolink:BiologicalProcess a owl:Class ; biolink:MolecularEntity a owl:Class ; rdfs:label "molecular entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:is_metabolite ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:is_metabolite ], [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; + owl:minCardinality 0 ; owl:onProperty biolink:is_metabolite ], biolink:ChemicalEntity ; skos:definition "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; @@ -10960,10 +10997,10 @@ biolink:MolecularEntity a owl:Class ; biolink:OrganismTaxon a owl:Class ; rdfs:label "organism taxon" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:TaxonomicRank ; + owl:minCardinality 0 ; owl:onProperty biolink:has_taxonomic_rank ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:TaxonomicRank ; owl:onProperty biolink:has_taxonomic_rank ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -10984,38 +11021,38 @@ biolink:InformationContentEntity a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:rights ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:creation_date ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:rights ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:format ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:license ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:creation_date ], + owl:maxCardinality 1 ; + owl:onProperty biolink:format ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:format ], [ a owl:Restriction ; - owl:allValuesFrom xsd:date ; + owl:maxCardinality 1 ; owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:license ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:rights ], + owl:allValuesFrom xsd:date ; + owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:license ], + owl:onProperty biolink:rights ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:format ], + owl:onProperty biolink:rights ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:format ], + owl:onProperty biolink:license ], biolink:NamedThing ; skos:altLabel "information", "information artefact", @@ -11036,6 +11073,19 @@ biolink:InformationContentEntity a owl:Class ; STY:T185, UMLSSG:CONC . +biolink:object_direction_qualifier a owl:ObjectProperty ; + rdfs:label "object direction qualifier" ; + rdfs:range biolink:DirectionQualifierEnum ; + rdfs:subPropertyOf biolink:direction_qualifier ; + skos:definition "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + skos:inScheme . + +biolink:subject_aspect_qualifier a owl:DatatypeProperty ; + rdfs:label "subject aspect qualifier" ; + rdfs:subPropertyOf biolink:aspect_qualifier ; + skos:definition "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + skos:inScheme . + biolink:CausalMechanismQualifierEnum a owl:Class ; rdfs:subClassOf linkml:EnumDefinition ; owl:unionOf ( ) ; @@ -11058,29 +11108,38 @@ biolink:CausalMechanismQualifierEnum a owl:Class ; , . +biolink:predicate_type a rdfs:Datatype ; + owl:equivalentClass xsd:anyURI . + biolink:Attribute a owl:Class ; rdfs:label "attribute" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_qualitative_value ], + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:has_qualitative_value ], + owl:allValuesFrom biolink:iri_type ; + owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_attribute_type ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:has_attribute_type ], + owl:allValuesFrom biolink:QuantityValue ; + owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iri ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_qualitative_value ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; - owl:allValuesFrom biolink:iri_type ; - owl:onProperty biolink:iri ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:name ], @@ -11088,23 +11147,17 @@ biolink:Attribute a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; - owl:allValuesFrom biolink:QuantityValue ; - owl:onProperty biolink:has_quantitative_value ], + owl:minCardinality 1 ; + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:iri ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quantitative_value ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:has_attribute_type ], biolink:NamedThing ; skos:definition "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; skos:exactMatch SIO:000614 ; @@ -11113,35 +11166,35 @@ biolink:Attribute a owl:Class ; biolink:Gene a owl:Class ; rdfs:label "gene" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:symbol ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:symbol ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct ], + owl:maxCardinality 1 ; + owl:onProperty biolink:symbol ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:symbol ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:onProperty biolink:symbol ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:symbol ], + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], biolink:BiologicalEntity ; skos:broadMatch ; skos:definition "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; @@ -11168,14 +11221,17 @@ biolink:BiologicalEntity a owl:Class ; biolink:SequenceVariant a owl:Class ; rdfs:label "sequence variant" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_gene ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:has_gene ], @@ -11183,17 +11239,14 @@ biolink:SequenceVariant a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_gene ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_biological_sequence ], @@ -11249,67 +11302,67 @@ biolink:Publication a owl:Class ; rdfs:label "publication" ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:pages ], + owl:onProperty biolink:keywords ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:name ], + owl:onProperty biolink:pages ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:mesh_terms ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:summary ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:pages ], + owl:onProperty biolink:summary ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; + owl:minCardinality 0 ; owl:onProperty biolink:authors ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:publication_type ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:keywords ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:publication_type ], + owl:maxCardinality 1 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:keywords ], + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:summary ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:mesh_terms ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:publication_type ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Agent ; + owl:onProperty biolink:authors ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:summary ], + owl:onProperty biolink:publication_type ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:authors ], + owl:onProperty biolink:pages ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:name ], + owl:minCardinality 0 ; + owl:onProperty biolink:keywords ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:summary ], + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:maxCardinality 1 ; + owl:onProperty biolink:summary ], biolink:InformationContentEntity ; skos:definition "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; skos:exactMatch IAO:0000311 ; @@ -11329,53 +11382,53 @@ biolink:id a owl:DatatypeProperty ; biolink:ChemicalEntity a owl:Class ; rdfs:label "chemical entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalRole ; - owl:onProperty biolink:has_chemical_role ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:is_toxic ], + owl:allValuesFrom biolink:DrugAvailabilityEnum ; + owl:onProperty biolink:available_from ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:trade_name ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:is_toxic ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalRole ; + owl:onProperty biolink:has_chemical_role ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:is_toxic ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_chemical_role ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:trade_name ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DrugAvailabilityEnum ; - owl:onProperty biolink:available_from ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:available_from ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_chemical_role ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:trade_name ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:max_tolerated_dose ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:trade_name ], @@ -11492,52 +11545,6 @@ biolink:node_property a owl:DatatypeProperty ; skos:definition "A grouping for any property that holds between a node and a value" ; skos:inScheme . -biolink:NamedThing a owl:Class ; - rdfs:label "named thing" ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:full_name ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:provided_by ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:full_name ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:provided_by ], - [ a owl:Restriction ; - owl:allValuesFrom [ a rdfs:Datatype ; - owl:onDatatype xsd:string ; - owl:withRestrictions ( [ xsd:pattern "^biolink:[A-Z][A-Za-z]+$" ] ) ] ; - owl:onProperty biolink:category ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:synonym ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:full_name ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:category ], - biolink:Entity ; - skos:definition "a databased entity or concept/class" ; - skos:exactMatch STY:T071, - , - dcid:Thing, - UMLSSG:OBJC, - WIKIDATA:Q35120 ; - skos:inScheme . - biolink:association_slot a owl:DatatypeProperty ; rdfs:label "association slot" ; rdfs:domain biolink:Association ; @@ -11552,218 +11559,218 @@ biolink:association_slot a owl:DatatypeProperty ; biolink:Association a owl:Class ; rdfs:label "association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:original_subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:original_object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:negated ], + owl:minCardinality 0 ; + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_evidence ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_label_closure ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom biolink:EvidenceType ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:negated ], + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_category ], + owl:onProperty biolink:object_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:qualifiers ], + owl:maxCardinality 1 ; + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_category_closure ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_closure ], + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_label_closure ], + owl:onProperty biolink:original_object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_category ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_closure ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object_category_closure ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:aggregator_knowledge_source ], + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:original_subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:Publication ; + owl:onProperty biolink:publications ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_category ], + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_namespace ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:negated ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_namespace ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category ], + owl:allValuesFrom biolink:RetrievalSource ; + owl:onProperty biolink:retrieval_source_ids ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:knowledge_source ], + owl:onProperty biolink:subject_label_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:category ], + owl:onProperty biolink:negated ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_category ], + owl:maxCardinality 1 ; + owl:onProperty biolink:original_object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:knowledge_source ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_label_closure ], + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:category_type ; - owl:onProperty biolink:category ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_category_closure ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_category ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Publication ; - owl:onProperty biolink:publications ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:original_object ], + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:retrieval_source_ids ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:primary_knowledge_source ], + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:negated ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:knowledge_source ], + owl:allValuesFrom biolink:time_type ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:original_predicate ], + owl:onProperty biolink:negated ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:original_object ], + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:original_object ], + owl:allValuesFrom biolink:category_type ; + owl:onProperty biolink:category ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:publications ], + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_namespace ], + owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifiers ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_label_closure ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:original_predicate ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object_category ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_namespace ], + owl:maxCardinality 1 ; + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualifier ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ], + owl:minCardinality 0 ; + owl:onProperty biolink:retrieval_source_ids ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:primary_knowledge_source ], + owl:minCardinality 0 ; + owl:onProperty biolink:category ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:original_subject ], + owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:aggregator_knowledge_source ], + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_closure ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_closure ], + owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_category ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:EvidenceType ; - owl:onProperty biolink:has_evidence ], + owl:minCardinality 0 ; + owl:onProperty biolink:publications ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:original_predicate ], + owl:onProperty biolink:object_category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:RetrievalSource ; - owl:onProperty biolink:retrieval_source_ids ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:primary_knowledge_source ], + owl:onProperty biolink:timepoint ], biolink:Entity ; skos:definition "A typed association between two entities, supported by evidence" ; skos:exactMatch OBAN:association, @@ -11780,6 +11787,54 @@ biolink:related_to_at_instance_level a owl:DatatypeProperty, skos:inScheme ; biolink:canonical_predicate true . +biolink:NamedThing a owl:Class ; + rdfs:label "named thing" ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:provided_by ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:provided_by ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:full_name ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:full_name ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:full_name ], + [ a owl:Restriction ; + owl:allValuesFrom [ a rdfs:Datatype ; + owl:onDatatype xsd:string ; + owl:withRestrictions ( [ xsd:pattern "^biolink:[A-Z][A-Za-z]+$" ] ) ] ; + owl:onProperty biolink:category ], + biolink:Entity ; + skos:definition "a databased entity or concept/class" ; + skos:exactMatch STY:T071, + , + dcid:Thing, + UMLSSG:OBJC, + WIKIDATA:Q35120 ; + skos:inScheme . + +xsd:string a rdfs:Datatype . + biolink:predicate a owl:DatatypeProperty ; rdfs:label "predicate" ; rdfs:domain biolink:Association ; @@ -11791,7 +11846,13 @@ biolink:predicate a owl:DatatypeProperty ; owl:annotatedProperty ; skos:inScheme . -xsd:string a rdfs:Datatype . +biolink:category a owl:DatatypeProperty ; + rdfs:label "category" ; + rdfs:domain biolink:Entity ; + rdfs:range biolink:category_type ; + rdfs:subPropertyOf biolink:type ; + skos:definition "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + skos:inScheme . biolink:object a owl:ObjectProperty ; rdfs:label "object" ; @@ -11813,445 +11874,394 @@ biolink:subject a owl:ObjectProperty ; owl:annotatedSource ; skos:inScheme . -biolink:category a owl:DatatypeProperty ; - rdfs:label "category" ; - rdfs:domain biolink:Entity ; - rdfs:range biolink:category_type ; - rdfs:subPropertyOf biolink:type ; - skos:definition "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - skos:inScheme . +[] a owl:Restriction ; + rdfs:subClassOf biolink:TaxonToTaxonAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:TaxonToTaxonAssociation . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductIsoformMixin . + rdfs:subClassOf biolink:EntityToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:EntityToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; + rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . + owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; + rdfs:subClassOf biolink:StudyResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . + owl:someValuesFrom biolink:StudyResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; + rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . + owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DrugToEntityAssociationMixin . + rdfs:subClassOf biolink:MacromolecularComplex ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MacromolecularComplex . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; + rdfs:subClassOf biolink:VariantToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . + owl:someValuesFrom biolink:VariantToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseAssociation ; + rdfs:subClassOf biolink:OrganismAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseAssociation . + owl:someValuesFrom biolink:OrganismAttribute . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicSequenceLocalization ; + rdfs:subClassOf biolink:MolecularEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicSequenceLocalization . + owl:someValuesFrom biolink:MolecularEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularComponent ; + rdfs:subClassOf biolink:Treatment ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularComponent . + owl:someValuesFrom biolink:Treatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicExposure . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ActivityAndBehavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:biological_sequence ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_biological_sequence ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularComplex ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularComplex . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Publication ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Publication . + owl:someValuesFrom biolink:EpigenomicEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToCatalystAssociation ; + rdfs:subClassOf biolink:MicroRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToCatalystAssociation . + owl:someValuesFrom biolink:MicroRNA . [] a owl:Restriction ; - rdfs:subClassOf biolink:RetrievalSource ; + rdfs:subClassOf biolink:SmallMolecule ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RetrievalSource . + owl:someValuesFrom biolink:SmallMolecule . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:PopulationToPopulationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:PopulationToPopulationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleosomeModification ; + rdfs:subClassOf biolink:EnvironmentalFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleosomeModification . + owl:someValuesFrom biolink:EnvironmentalFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntity ; + rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntity . + owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NoncodingRNAProduct ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NoncodingRNAProduct . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Association ; + rdfs:subClassOf biolink:Event ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Association . + owl:someValuesFrom biolink:Event . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; + rdfs:subClassOf biolink:AccessibleDnaRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . + owl:someValuesFrom biolink:AccessibleDnaRegion . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; + rdfs:subClassOf biolink:ClinicalTrial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . + owl:someValuesFrom biolink:ClinicalTrial . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + rdfs:subClassOf biolink:GenotypeToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + owl:someValuesFrom biolink:GenotypeToGeneAssociation . [] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Drug ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathognomonicityQuantifier . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntity . + owl:someValuesFrom biolink:DrugToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; + rdfs:subClassOf biolink:Invertebrate ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . + owl:someValuesFrom biolink:Invertebrate . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcess ; + rdfs:subClassOf biolink:VariantToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcess . + owl:someValuesFrom biolink:VariantToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Bacterium ; + rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Bacterium . + owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Onset ; - owl:onProperty biolink:onset_qualifier ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:onset_qualifier ], + owl:onProperty biolink:in_taxon_label ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:in_taxon_label ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:onset_qualifier ], + owl:onProperty biolink:in_taxon_label ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SeverityValue ; - owl:onProperty biolink:severity_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:in_taxon ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:severity_qualifier ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:in_taxon ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:severity_qualifier ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:in_taxon ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProductIsoform ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProductIsoform . + owl:someValuesFrom biolink:ThingWithTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Onset ; + rdfs:subClassOf biolink:GeneFamily ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Onset . + owl:someValuesFrom biolink:GeneFamily . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalMeasurement ; + rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalMeasurement . + owl:someValuesFrom biolink:DrugToGeneInteractionExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:LifeStage ; + rdfs:subClassOf biolink:PairwiseMolecularInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LifeStage . + owl:someValuesFrom biolink:PairwiseMolecularInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugExposure ; + rdfs:subClassOf biolink:BiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugExposure . + owl:someValuesFrom biolink:BiologicalProcess . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocationAtTime ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocationAtTime . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin . + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:BioticExposure ; + rdfs:subClassOf biolink:CommonDataElement ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BioticExposure . + owl:someValuesFrom biolink:CommonDataElement . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToParticipantAssociation ; + rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToParticipantAssociation . + owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass . + rdfs:subClassOf biolink:VariantToPopulationAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:VariantToPopulationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Patent ; + rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Patent . + owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalAttribute ; + rdfs:subClassOf biolink:PhenotypicQuality ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalAttribute . + owl:someValuesFrom biolink:PhenotypicQuality . [] a owl:Restriction ; - rdfs:subClassOf biolink:Gene ; + rdfs:subClassOf biolink:DrugExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Gene . + owl:someValuesFrom biolink:DrugExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:AnatomicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:AnatomicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcess ; + rdfs:subClassOf biolink:PreprintPublication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcess . + owl:someValuesFrom biolink:PreprintPublication . [] a owl:Restriction ; - rdfs:subClassOf biolink:SeverityValue ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SeverityValue . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DiagnosticAid ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiagnosticAid . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:CodingSequence ; + rdfs:subClassOf biolink:ExonToTranscriptRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CodingSequence . + owl:someValuesFrom biolink:ExonToTranscriptRelationship . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProduct ; + rdfs:subClassOf biolink:DatasetVersion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProduct . + owl:someValuesFrom biolink:DatasetVersion . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGeneAssociation ; + rdfs:subClassOf biolink:LifeStage ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGeneAssociation . + owl:someValuesFrom biolink:LifeStage . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneProductRelationship ; + rdfs:subClassOf biolink:GeneToGoTermAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneProductRelationship . + owl:someValuesFrom biolink:GeneToGoTermAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:NucleosomeModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:NucleosomeModification . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReagentTargetedGene ; + rdfs:subClassOf biolink:Dataset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReagentTargetedGene . + owl:someValuesFrom biolink:Dataset . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . + rdfs:subClassOf biolink:Agent ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Agent . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; + rdfs:subClassOf biolink:ClinicalMeasurement ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . + owl:someValuesFrom biolink:ClinicalMeasurement . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseMolecularInteraction ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseMolecularInteraction . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SpecificityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:Pathway ; + rdfs:subClassOf biolink:Book ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Pathway . + owl:someValuesFrom biolink:Book . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneInteractionExposure . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalIntervention ; + rdfs:subClassOf biolink:ReactionToParticipantAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalIntervention . + owl:someValuesFrom biolink:ReactionToParticipantAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Outcome ; - owl:onProperty biolink:object ] ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Event ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Event . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetVersion ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetVersion . + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceAssociation ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceAssociation . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . [] a owl:Restriction ; rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; @@ -12259,127 +12269,148 @@ biolink:category a owl:DatatypeProperty ; owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Agent ; + rdfs:subClassOf biolink:GeneToGeneProductRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Agent . + owl:someValuesFrom biolink:GeneToGeneProductRelationship . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinIsoform ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinIsoform . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ] ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity . + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Drug ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Drug . + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; + rdfs:subClassOf biolink:Case ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalStructure . + owl:someValuesFrom biolink:Case . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Serial ; + rdfs:subClassOf biolink:GeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Serial . + owl:someValuesFrom biolink:GeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SensitivityQuantifier . + owl:someValuesFrom biolink:GeneProductIsoformMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PosttranslationalModification ; + rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PosttranslationalModification . + owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; + rdfs:subClassOf biolink:BiologicalSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . + owl:someValuesFrom biolink:BiologicalSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptToGeneRelationship ; + rdfs:subClassOf biolink:NucleicAcidEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptToGeneRelationship . + owl:someValuesFrom biolink:NucleicAcidEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; + rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . + owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:PhenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:PhenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToDiseaseAssociation ; + rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToDiseaseAssociation . + owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; + rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . + owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneOrGeneProduct . + +[] a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Outcome . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:CodingSequence ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . + owl:someValuesFrom biolink:CodingSequence . [] a owl:Restriction ; rdfs:subClassOf biolink:MolecularMixture ; @@ -12387,1110 +12418,1503 @@ biolink:category a owl:DatatypeProperty ; owl:someValuesFrom biolink:MolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPopulationAssociation ; + rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPopulationAssociation . + owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceFeatureRelationship ; + rdfs:subClassOf biolink:InformationContentEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceFeatureRelationship . + owl:someValuesFrom biolink:InformationContentEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cohort ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:synonym ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneProductMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cohort . + owl:someValuesFrom biolink:PhenotypicFeature . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Onset ; - owl:onProperty biolink:onset_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:onset_qualifier ], + owl:onProperty biolink:frequency_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SeverityValue ; - owl:onProperty biolink:severity_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:onset_qualifier ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:severity_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:severity_qualifier ] ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Exon ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Exon . + owl:someValuesFrom biolink:FrequencyQualifierMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Behavior ; + rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Behavior . + owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Polypeptide ; + rdfs:subClassOf biolink:SocioeconomicAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Polypeptide . + owl:someValuesFrom biolink:SocioeconomicAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneticInheritance ; + rdfs:subClassOf biolink:DrugLabel ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneticInheritance . + owl:someValuesFrom biolink:DrugLabel . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:biological_sequence ; + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExonToTranscriptRelationship ; + rdfs:subClassOf biolink:BookChapter ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExonToTranscriptRelationship . + owl:someValuesFrom biolink:BookChapter . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationToPopulationAssociation ; + rdfs:subClassOf biolink:ChemicalRole ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationToPopulationAssociation . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior . + owl:someValuesFrom biolink:ChemicalRole . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; + rdfs:subClassOf biolink:BiologicalProcessOrActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFoodContaminant . + owl:someValuesFrom biolink:BiologicalProcessOrActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalProcess ; + rdfs:subClassOf biolink:Procedure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalProcess . + owl:someValuesFrom biolink:Procedure . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MaterialSample ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . + owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicQuality ; + rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicQuality . + owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Case ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalExposure . + owl:someValuesFrom biolink:CaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyResult ; + rdfs:subClassOf biolink:ClinicalCourse ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyResult . + owl:someValuesFrom biolink:ClinicalCourse . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; + rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . + owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Virus ; + rdfs:subClassOf biolink:PhysiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Virus . + owl:someValuesFrom biolink:PhysiologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:Dataset ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Dataset . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThing ; + rdfs:subClassOf biolink:PosttranslationalModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThing . + owl:someValuesFrom biolink:PosttranslationalModification . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genome ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genome . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Outcome . + owl:someValuesFrom biolink:SensitivityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:JournalArticle ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:JournalArticle . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalExposure ; + rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalExposure . + owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexMolecularMixture ; + rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexMolecularMixture . + owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AdministrativeEntity ; + rdfs:subClassOf biolink:ProteinIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AdministrativeEntity . + owl:someValuesFrom biolink:ProteinIsoform . [] a owl:Restriction ; - rdfs:subClassOf biolink:Article ; + rdfs:subClassOf biolink:Exon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Article . + owl:someValuesFrom biolink:Exon . [] a owl:Restriction ; - rdfs:subClassOf biolink:SiRNA ; + rdfs:subClassOf biolink:FunctionalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SiRNA . + owl:someValuesFrom biolink:FunctionalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:IndividualOrganism ; + rdfs:subClassOf biolink:ContributorAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:IndividualOrganism . + owl:someValuesFrom biolink:ContributorAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalMixture ; + rdfs:subClassOf biolink:Virus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalMixture . + owl:someValuesFrom biolink:Virus . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneAssociation ; + rdfs:subClassOf biolink:Cell ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneAssociation . + owl:someValuesFrom biolink:Cell . [] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Outcome ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . + owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeature ; + rdfs:subClassOf biolink:Patent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeature . + owl:someValuesFrom biolink:Patent . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalCourse ; + rdfs:subClassOf biolink:ConceptCountAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalCourse . + owl:someValuesFrom biolink:ConceptCountAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalAssociation . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:Food ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:Food . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; + rdfs:subClassOf biolink:ClinicalIntervention ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . + owl:someValuesFrom biolink:ClinicalIntervention . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:in_taxon ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon . + rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; + rdfs:subClassOf biolink:RetrievalSource ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . + owl:someValuesFrom biolink:RetrievalSource . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexChemicalExposure ; + rdfs:subClassOf biolink:PlanetaryEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexChemicalExposure . + owl:someValuesFrom biolink:PlanetaryEntity . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . + rdfs:subClassOf biolink:Genome ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Genome . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; + rdfs:subClassOf biolink:WebPage ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . + owl:someValuesFrom biolink:WebPage . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . [] a owl:Restriction ; - rdfs:subClassOf biolink:Fungus ; + rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Fungus . + owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariant ; + rdfs:subClassOf biolink:Polypeptide ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariant . + owl:someValuesFrom biolink:Polypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; + rdfs:subClassOf biolink:Onset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . + owl:someValuesFrom biolink:Onset . [] a owl:Restriction ; - rdfs:subClassOf biolink:PreprintPublication ; + rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PreprintPublication . + owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; + rdfs:subClassOf biolink:Plant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . + owl:someValuesFrom biolink:Plant . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Article ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Article . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GenomicSequenceLocalization ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenomicSequenceLocalization . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:quantifier_qualifier ], + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:quantifier_qualifier ], + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:expression_site ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:expression_site ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stage_qualifier ], + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GenomicBackgroundExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenomicBackgroundExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Transcript ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Transcript . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:phenotypic_state ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ExposureEvent ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:phenotypic_state ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:expression_site ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:phenotypic_state ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:quantifier_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:stage_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:LifeStage ; - owl:onProperty biolink:stage_qualifier ] ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralExposure . + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Snv ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Snv . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CommonDataElement ; + rdfs:subClassOf biolink:ChemicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CommonDataElement . + owl:someValuesFrom biolink:ChemicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetSummary ; + rdfs:subClassOf biolink:GeographicLocationAtTime ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetSummary . + owl:someValuesFrom biolink:GeographicLocationAtTime . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicAttribute ; + rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicAttribute . + owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularOrganism ; + rdfs:subClassOf biolink:SiRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularOrganism . + owl:someValuesFrom biolink:SiRNA . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntity ; + rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntity . + owl:someValuesFrom biolink:PathologicalAnatomicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Protein ; + rdfs:subClassOf biolink:GrossAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Protein . + owl:someValuesFrom biolink:GrossAnatomicalStructure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genotype ; + rdfs:subClassOf biolink:BiologicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genotype . + owl:someValuesFrom biolink:BiologicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPathwayAssociation ; + rdfs:subClassOf biolink:GeographicLocation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPathwayAssociation . + owl:someValuesFrom biolink:GeographicLocation . [] a owl:Restriction ; - rdfs:subClassOf biolink:FunctionalAssociation ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FunctionalAssociation . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalEntity ; + rdfs:subClassOf biolink:PhysicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalEntity . + owl:someValuesFrom biolink:PhysicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Plant ; + rdfs:subClassOf biolink:Protein ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Plant . + owl:someValuesFrom biolink:Protein . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismToOrganismAssociation ; + rdfs:subClassOf biolink:Bacterium ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismToOrganismAssociation . + owl:someValuesFrom biolink:Bacterium . [] a owl:Restriction ; - rdfs:subClassOf biolink:ContributorAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ContributorAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Cell ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cell . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CellLine ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; + rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . + owl:someValuesFrom biolink:EnvironmentalFoodContaminant . [] a owl:Restriction ; - rdfs:subClassOf biolink:Zygosity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Zygosity . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathologicalEntityMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugLabel ; + rdfs:subClassOf biolink:Mammal ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugLabel . + owl:someValuesFrom biolink:Mammal . [] a owl:Restriction ; - rdfs:subClassOf biolink:Device ; + rdfs:subClassOf biolink:Genotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Device . + owl:someValuesFrom biolink:Genotype . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSample ; + rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSample . + owl:someValuesFrom biolink:TranscriptionFactorBindingSite . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; + rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidSequenceMotif . + owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:has_count ], [ a owl:Restriction ; - owl:allValuesFrom biolink:symbol_type ; - owl:onProperty biolink:name ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ] ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_count ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Case ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Case . + owl:someValuesFrom biolink:FrequencyQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToVariantAssociation ; + rdfs:subClassOf biolink:Behavior ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToVariantAssociation . + owl:someValuesFrom biolink:Behavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; + rdfs:subClassOf biolink:Attribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . + owl:someValuesFrom biolink:Attribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:Entity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . + owl:someValuesFrom biolink:Entity . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:ChemicalToChemicalAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom ; - owl:onProperty biolink:frequency_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:frequency_qualifier ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:frequency_qualifier ] ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQualifierMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptionFactorBindingSite . + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; + rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . + owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Phenomenon ; + rdfs:subClassOf biolink:StudyPopulation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Phenomenon . + owl:someValuesFrom biolink:StudyPopulation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PlanetaryEntity ; + rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PlanetaryEntity . + owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcessExposure ; + rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcessExposure . + owl:someValuesFrom biolink:PathologicalAnatomicalStructure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Study ; + rdfs:subClassOf biolink:StudyVariable ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Study . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . + owl:someValuesFrom biolink:StudyVariable . [] a owl:Restriction ; - rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:JournalArticle ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:JournalArticle . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SpecificityQuantifier . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysicalEntity ; + rdfs:subClassOf biolink:ProteinDomain ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysicalEntity . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:RelationshipQuantifier . + owl:someValuesFrom biolink:ProteinDomain . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; + rdfs:subClassOf biolink:MolecularActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChiSquaredAnalysisResult . + owl:someValuesFrom biolink:MolecularActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; + rdfs:subClassOf biolink:ProcessedMaterial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . + owl:someValuesFrom biolink:ProcessedMaterial . [] a owl:Restriction ; - rdfs:subClassOf biolink:MicroRNA ; + rdfs:subClassOf biolink:Device ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MicroRNA . + owl:someValuesFrom biolink:Device . [] a owl:Restriction ; - rdfs:subClassOf biolink:TextMiningResult ; + rdfs:subClassOf biolink:GenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TextMiningResult . + owl:someValuesFrom biolink:GenotypicSex . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_percentage ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_percentage ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_quotient ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_count ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_total ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_percentage ], + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_count ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_total ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_total ], + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_count ], + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_quotient ] ; + owl:onProperty biolink:subject_direction_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier . + owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyVariable ; + rdfs:subClassOf biolink:RegulatoryRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyVariable . + owl:someValuesFrom biolink:RegulatoryRegion . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralFeature ; + rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralFeature . + owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:FoodAdditive ; + rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FoodAdditive . + owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneAssociation ; + rdfs:subClassOf biolink:TranscriptToGeneRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneAssociation . + owl:someValuesFrom biolink:TranscriptToGeneRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntity ; + rdfs:subClassOf biolink:PathologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntity . + owl:someValuesFrom biolink:PathologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysiologicalProcess ; + rdfs:subClassOf biolink:PathologicalProcessExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysiologicalProcess . + owl:someValuesFrom biolink:PathologicalProcessExposure . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . + owl:someValuesFrom biolink:PathognomonicityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalExposure . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFeature ; + rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFeature . + owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalSex ; + rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalSex . + owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicExposure ; + rdfs:subClassOf biolink:Gene ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicExposure . + owl:someValuesFrom biolink:Gene . [] a owl:Restriction ; - rdfs:subClassOf biolink:WebPage ; + rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:WebPage . + owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Case ; - owl:onProperty biolink:subject ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CaseToEntityAssociationMixin . + owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; + rdfs:subClassOf biolink:OrganismalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation . + owl:someValuesFrom biolink:OrganismalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Hospitalization ; + rdfs:subClassOf biolink:ProteinFamily ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Hospitalization . + owl:someValuesFrom biolink:ProteinFamily . [] a owl:Restriction ; - rdfs:subClassOf biolink:Book ; + rdfs:subClassOf biolink:ReactionToCatalystAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Book . + owl:someValuesFrom biolink:ReactionToCatalystAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalEntity ; + rdfs:subClassOf biolink:CellularOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalEntity . + owl:someValuesFrom biolink:CellularOrganism . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Invertebrate ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Invertebrate . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:RegulatoryRegion ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RegulatoryRegion . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ] ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalRole ; + rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalRole . + owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinDomain ; + rdfs:subClassOf biolink:Human ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinDomain . + owl:someValuesFrom biolink:Human . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; + rdfs:subClassOf biolink:NamedThing ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . + owl:someValuesFrom biolink:NamedThing . [] a owl:Restriction ; - rdfs:subClassOf biolink:EvidenceType ; + rdfs:subClassOf biolink:EnvironmentalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EvidenceType . + owl:someValuesFrom biolink:EnvironmentalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; + rdfs:subClassOf biolink:CellularComponent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . + owl:someValuesFrom biolink:CellularComponent . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . - + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:quantifier_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:expression_site ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:LifeStage ; + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:quantifier_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:quantifier_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:expression_site ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:expression_site ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:stage_qualifier ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneExpressionMixin . + [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicSex ; + rdfs:subClassOf biolink:ClinicalAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicSex . + owl:someValuesFrom biolink:ClinicalAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; + rdfs:subClassOf biolink:Fungus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . + owl:someValuesFrom biolink:Fungus . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneToGeneAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneToGeneAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Vertebrate ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Vertebrate . [] a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; + rdfs:subClassOf biolink:GeneticInheritance ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . + owl:someValuesFrom biolink:GeneticInheritance . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct . + owl:someValuesFrom biolink:RelationshipQuantifier . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GenotypeToVariantAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenotypeToVariantAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:SequenceVariant ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:SequenceVariant . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:BioticExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:BioticExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ReagentTargetedGene ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ReagentTargetedGene . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ClinicalFinding ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ClinicalFinding . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:BehavioralExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:BehavioralExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DiagnosticAid ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DiagnosticAid . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ComplexChemicalExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ComplexChemicalExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Cohort ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Cohort . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathologicalEntityMixin . + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToDiseaseAssociation ; + rdfs:subClassOf biolink:MaterialSample ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToDiseaseAssociation . + owl:someValuesFrom biolink:MaterialSample . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ChemicalMixture ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalMixture . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:NucleicAcidSequenceMotif . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:FoodAdditive ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:FoodAdditive . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:synonym ], + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ], + owl:maxCardinality 1 ; + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ] ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductMixin . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Food ; + rdfs:subClassOf biolink:RNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Food . + owl:someValuesFrom biolink:RNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; + rdfs:subClassOf biolink:Drug ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . + owl:someValuesFrom biolink:Drug . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalModifier ; + rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalModifier . + owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProcessedMaterial ; + rdfs:subClassOf biolink:Publication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProcessedMaterial . + owl:someValuesFrom biolink:Publication . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicBackgroundExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicBackgroundExposure . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxon ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:NoncodingRNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxon . + owl:someValuesFrom biolink:NoncodingRNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:LogOddsAnalysisResult ; + rdfs:subClassOf biolink:Serial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LogOddsAnalysisResult . + owl:someValuesFrom biolink:Serial . [] a owl:Restriction ; - rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:IndividualOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . + owl:someValuesFrom biolink:IndividualOrganism . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:LogOddsAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:LogOddsAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:Haplotype ; + rdfs:subClassOf biolink:Phenomenon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Haplotype . + owl:someValuesFrom biolink:Phenomenon . [] a owl:Restriction ; - rdfs:subClassOf biolink:Vertebrate ; + rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Vertebrate . + owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Mammal ; + rdfs:subClassOf biolink:ChemicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Mammal . + owl:someValuesFrom biolink:ChemicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; + rdfs:subClassOf biolink:SocioeconomicExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . + owl:someValuesFrom biolink:SocioeconomicExposure . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:time_type ; + owl:onProperty biolink:timepoint ], + [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_gene_or_gene_product ], + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:has_gene_or_gene_product ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:timepoint ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin . + owl:someValuesFrom biolink:ExposureEvent . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneAssociation ; + rdfs:subClassOf biolink:GeographicExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeographicExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:SequenceFeatureRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneAssociation . + owl:someValuesFrom biolink:SequenceFeatureRelationship . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . + rdfs:subClassOf biolink:Activity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Activity . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_gene_or_gene_product ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:subject ] ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:has_gene_or_gene_product ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToPathwayAssociation . + owl:someValuesFrom biolink:GeneGroupingMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Human ; + rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Human . + owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalTrial ; + rdfs:subClassOf biolink:DatasetDistribution ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalTrial . + owl:someValuesFrom biolink:DatasetDistribution . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLine ; + rdfs:subClassOf biolink:OrganismToOrganismAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLine . + owl:someValuesFrom biolink:OrganismToOrganismAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismAttribute ; + rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismAttribute . + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MaterialSample ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . + owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyPopulation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyPopulation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:symbol_type ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:name ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MacromolecularMachineMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGoTermAssociation ; + rdfs:subClassOf biolink:ClinicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGoTermAssociation . + owl:someValuesFrom biolink:ClinicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Procedure ; + rdfs:subClassOf biolink:EnvironmentalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Procedure . + owl:someValuesFrom biolink:EnvironmentalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:TaxonToTaxonAssociation ; + rdfs:subClassOf biolink:Study ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TaxonToTaxonAssociation . + owl:someValuesFrom biolink:Study . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcessOrActivity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcessOrActivity . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; + rdfs:subClassOf biolink:CellLine ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent . + owl:someValuesFrom biolink:CellLine . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; + rdfs:subClassOf biolink:Pathway ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . + owl:someValuesFrom biolink:Pathway . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . + rdfs:subClassOf biolink:ConfidenceLevel ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ConfidenceLevel . [] a owl:Restriction ; rdfs:subClassOf biolink:Disease ; @@ -13498,19 +13922,19 @@ biolink:category a owl:DatatypeProperty ; owl:someValuesFrom biolink:Disease . [] a owl:Restriction ; - rdfs:subClassOf biolink:AccessibleDnaRegion ; + rdfs:subClassOf biolink:Haplotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AccessibleDnaRegion . + owl:someValuesFrom biolink:Haplotype . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetDistribution ; + rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetDistribution . + owl:someValuesFrom biolink:ChemicalToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypicSex ; + rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypicSex . + owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; @@ -13518,118 +13942,143 @@ biolink:category a owl:DatatypeProperty ; owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; + rdfs:subClassOf biolink:AdministrativeEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . + owl:someValuesFrom biolink:AdministrativeEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularEntity ; + rdfs:subClassOf biolink:DrugToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularEntity . + owl:someValuesFrom biolink:DrugToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivity ; + rdfs:subClassOf biolink:SequenceAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivity . + owl:someValuesFrom biolink:SequenceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConceptCountAnalysisResult ; + rdfs:subClassOf biolink:SeverityValue ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConceptCountAnalysisResult . + owl:someValuesFrom biolink:SeverityValue . [] a owl:Restriction ; - rdfs:subClassOf biolink:Activity ; + rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Activity . + owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GrossAnatomicalStructure ; + rdfs:subClassOf biolink:ClinicalModifier ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GrossAnatomicalStructure . + owl:someValuesFrom biolink:ClinicalModifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneFamily ; + rdfs:subClassOf biolink:Zygosity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneFamily . + owl:someValuesFrom biolink:Zygosity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Entity ; + rdfs:subClassOf biolink:TextMiningResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Entity . + owl:someValuesFrom biolink:TextMiningResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocation ; + rdfs:subClassOf biolink:OrganismTaxon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocation . + owl:someValuesFrom biolink:OrganismTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:Treatment ; + rdfs:subClassOf biolink:GeneToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Treatment . + owl:someValuesFrom biolink:GeneToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; + rdfs:subClassOf biolink:Snv ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . + owl:someValuesFrom biolink:Snv . [] a owl:Restriction ; - rdfs:subClassOf biolink:Transcript ; + rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Transcript . + owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SmallMolecule ; + rdfs:subClassOf biolink:Association ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SmallMolecule . + owl:someValuesFrom biolink:Association . [] a owl:Restriction ; - rdfs:subClassOf biolink:BookChapter ; + rdfs:subClassOf biolink:Hospitalization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BookChapter . + owl:someValuesFrom biolink:Hospitalization . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:RNAProductIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . + owl:someValuesFrom biolink:RNAProductIsoform . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidEntity ; + rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidEntity . + owl:someValuesFrom biolink:ChiSquaredAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConfidenceLevel ; + rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConfidenceLevel . + owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinFamily ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ComplexMolecularMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinFamily . + owl:someValuesFrom biolink:ComplexMolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalFinding ; + rdfs:subClassOf biolink:EvidenceType ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalFinding . + owl:someValuesFrom biolink:EvidenceType . [] a owl:Restriction ; - rdfs:subClassOf biolink:Attribute ; + rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Attribute . + owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; + rdfs:subClassOf biolink:BehavioralFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . + owl:someValuesFrom biolink:BehavioralFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; + rdfs:subClassOf biolink:DatasetSummary ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . + owl:someValuesFrom biolink:DatasetSummary . diff --git a/project/protobuf/biolink_model.proto b/project/protobuf/biolink_model.proto index 917663211..a36ac8168 100644 --- a/project/protobuf/biolink_model.proto +++ b/project/protobuf/biolink_model.proto @@ -167,9 +167,9 @@ message Article repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 uriorcurie publishedIn = 0 string isoAbbreviation = 0 string volume = 0 @@ -308,8 +308,11 @@ message BehaviorToBehavioralFeatureAssociation behavior subject = 0 behavioralFeature object = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -455,8 +458,8 @@ message Book repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 - labelType name = 0 repeated string publicationType = 0 + labelType name = 0 string id = 0 repeated string type = 0 } @@ -481,9 +484,9 @@ message BookChapter repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 uriorcurie publishedIn = 0 string volume = 0 string chapter = 0 @@ -544,8 +547,11 @@ message CaseToPhenotypicFeatureAssociation repeated string type = 0 repeated categoryType category = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -589,8 +595,9 @@ message CausalGeneToDiseaseAssociation directionQualifierEnum objectDirectionQualifier = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -670,8 +677,11 @@ message CellLineAsAModelOfDiseaseAssociation repeated categoryType category = 0 cellLine subject = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 } // An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype. message CellLineToDiseaseOrPhenotypicFeatureAssociation @@ -790,14 +800,14 @@ message ChemicalAffectsGeneAssociation geneOrGeneProductOrChemicalPartQualifierEnum objectPartQualifier = 0 geneOrGeneProductOrChemicalEntityAspectEnum objectAspectQualifier = 0 anatomicalEntity objectContextQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 causalMechanismQualifierEnum causalMechanismQualifier = 0 anatomicalEntity anatomicalContextQualifier = 0 string qualifiedPredicate = 0 + organismTaxon speciesContextQualifier = 0 chemicalEntity subject = 0 predicateType predicate = 0 geneOrGeneProduct object = 0 - directionQualifierEnum objectDirectionQualifier = 0 - organismTaxon speciesContextQualifier = 0 } // A chemical entity is a physical entity that pertains to chemistry or biochemistry. message ChemicalEntity @@ -1093,8 +1103,6 @@ message ChemicalToChemicalAssociation narrativeText description = 0 repeated attribute hasAttribute = 0 boolean deprecated = 0 - namedThing subject = 0 - predicateType predicate = 0 boolean negated = 0 string qualifier = 0 repeated ontologyClass qualifiers = 0 @@ -1120,6 +1128,8 @@ message ChemicalToChemicalAssociation repeated retrievalSource retrievalSourceIds = 0 repeated string type = 0 repeated categoryType category = 0 + namedThing subject = 0 + predicateType predicate = 0 chemicalEntity object = 0 } // A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P @@ -1612,8 +1622,9 @@ message CorrelatedGeneToDiseaseAssociation directionQualifierEnum objectDirectionQualifier = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -1948,8 +1959,11 @@ message DiseaseToPhenotypicFeatureAssociation disease subject = 0 phenotypicFeature object = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -2023,9 +2037,9 @@ message DrugLabel repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 } // An interaction between a drug and a gene or gene product. message DrugToGeneAssociation @@ -2121,8 +2135,9 @@ message DruggableGeneToDiseaseAssociation geneOrGeneProductOrChemicalEntityAspectEnum subjectAspectQualifier = 0 directionQualifierEnum objectDirectionQualifier = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -2451,8 +2466,11 @@ message ExposureEventToPhenotypicFeatureAssociation repeated categoryType category = 0 exposureEvent subject = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -2624,15 +2642,15 @@ message GeneAffectsChemicalAssociation geneOrGeneProductOrChemicalPartQualifierEnum objectPartQualifier = 0 geneOrGeneProductOrChemicalEntityAspectEnum objectAspectQualifier = 0 anatomicalEntity objectContextQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + chemicalEntityDerivativeEnum objectDerivativeQualifier = 0 causalMechanismQualifierEnum causalMechanismQualifier = 0 anatomicalEntity anatomicalContextQualifier = 0 string qualifiedPredicate = 0 + organismTaxon speciesContextQualifier = 0 geneOrGeneProduct subject = 0 predicateType predicate = 0 chemicalEntity object = 0 - chemicalEntityDerivativeEnum objectDerivativeQualifier = 0 - directionQualifierEnum objectDirectionQualifier = 0 - organismTaxon speciesContextQualifier = 0 } message GeneAsAModelOfDiseaseAssociation { @@ -2671,8 +2689,9 @@ message GeneAsAModelOfDiseaseAssociation directionQualifierEnum objectDirectionQualifier = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -2736,8 +2755,9 @@ message GeneHasVariantThatContributesToDiseaseAssociation geneOrGeneProductOrChemicalEntityAspectEnum subjectAspectQualifier = 0 directionQualifierEnum objectDirectionQualifier = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -2785,8 +2805,9 @@ message GeneToDiseaseAssociation directionQualifierEnum objectDirectionQualifier = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -2834,8 +2855,9 @@ message GeneToDiseaseOrPhenotypicFeatureAssociation diseaseOrPhenotypicFeature object = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -3150,8 +3172,9 @@ message GeneToPhenotypicFeatureAssociation directionQualifierEnum objectDirectionQualifier = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -3320,8 +3343,11 @@ message GenotypeAsAModelOfDiseaseAssociation predicateType predicate = 0 namedThing object = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 genotype subject = 0 } message GenotypeToDiseaseAssociation @@ -3361,8 +3387,11 @@ message GenotypeToDiseaseAssociation predicateType predicate = 0 namedThing object = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 } // Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality message GenotypeToGeneAssociation @@ -3478,8 +3507,11 @@ message GenotypeToPhenotypicFeatureAssociation predicateType predicate = 0 genotype subject = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -3765,9 +3797,9 @@ message JournalArticle repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 uriorcurie publishedIn = 0 string isoAbbreviation = 0 string volume = 0 @@ -4012,8 +4044,8 @@ message MaterialSampleDerivationAssociation repeated string type = 0 repeated categoryType category = 0 materialSample subject = 0 - namedThing object = 0 predicateType predicate = 0 + namedThing object = 0 } // An association between a material sample and a disease or phenotype. message MaterialSampleToDiseaseOrPhenotypicFeatureAssociation @@ -4276,8 +4308,6 @@ message NamedThingAssociatedWithLikelihoodOfNamedThingAssociation narrativeText description = 0 repeated attribute hasAttribute = 0 boolean deprecated = 0 - namedThing subject = 0 - namedThing object = 0 boolean negated = 0 string qualifier = 0 repeated ontologyClass qualifiers = 0 @@ -4303,11 +4333,14 @@ message NamedThingAssociatedWithLikelihoodOfNamedThingAssociation repeated retrievalSource retrievalSourceIds = 0 repeated string type = 0 repeated categoryType category = 0 - predicateType predicate = 0 + namedThing subject = 0 string subjectAspectQualifier = 0 ontologyClass subjectContextQualifier = 0 + predicateType predicate = 0 + namedThing object = 0 string objectAspectQualifier = 0 ontologyClass objectContextQualifier = 0 + populationOfIndividualOrganisms populationContextQualifier = 0 } message NoncodingRNAProduct { @@ -4614,8 +4647,11 @@ message OrganismalEntityAsAModelOfDiseaseAssociation repeated categoryType category = 0 organismalEntity subject = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 } // An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation) message PairwiseGeneToGeneInteraction @@ -4716,9 +4752,9 @@ message Patent repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 } // An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome. message PathologicalAnatomicalExposure @@ -4890,8 +4926,11 @@ message PhenotypicFeatureToDiseaseAssociation repeated categoryType category = 0 predicateType predicate = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -5144,9 +5183,9 @@ message PreprintPublication repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 } // A series of actions conducted in a certain order or manner message Procedure @@ -5284,9 +5323,9 @@ message Publication repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 } // A value of an attribute that is quantitative and measurable, expressed as a combination of a unit and a numeric value message QuantityValue @@ -5302,7 +5341,6 @@ message ReactionToCatalystAssociation narrativeText description = 0 repeated attribute hasAttribute = 0 boolean deprecated = 0 - predicateType predicate = 0 boolean negated = 0 string qualifier = 0 repeated ontologyClass qualifiers = 0 @@ -5328,6 +5366,7 @@ message ReactionToCatalystAssociation repeated retrievalSource retrievalSourceIds = 0 repeated string type = 0 repeated categoryType category = 0 + predicateType predicate = 0 integer stoichiometry = 0 reactionDirectionEnum reactionDirection = 0 reactionSideEnum reactionSide = 0 @@ -5342,7 +5381,6 @@ message ReactionToParticipantAssociation narrativeText description = 0 repeated attribute hasAttribute = 0 boolean deprecated = 0 - predicateType predicate = 0 boolean negated = 0 string qualifier = 0 repeated ontologyClass qualifiers = 0 @@ -5368,6 +5406,7 @@ message ReactionToParticipantAssociation repeated retrievalSource retrievalSourceIds = 0 repeated string type = 0 repeated categoryType category = 0 + predicateType predicate = 0 chemicalEntity object = 0 integer stoichiometry = 0 reactionDirectionEnum reactionDirection = 0 @@ -5612,8 +5651,8 @@ message Serial repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 - labelType name = 0 repeated string publicationType = 0 + labelType name = 0 string isoAbbreviation = 0 string volume = 0 string issue = 0 @@ -5985,8 +6024,11 @@ message VariantAsAModelOfDiseaseAssociation predicateType predicate = 0 namedThing object = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 sequenceVariant subject = 0 } message VariantToDiseaseAssociation @@ -6026,8 +6068,11 @@ message VariantToDiseaseAssociation predicateType predicate = 0 namedThing object = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 } // An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium) message VariantToGeneAssociation @@ -6146,8 +6191,11 @@ message VariantToPhenotypicFeatureAssociation repeated categoryType category = 0 sequenceVariant subject = 0 frequencyValue frequencyQualifier = 0 - severityValue severityQualifier = 0 - onset onsetQualifier = 0 + string subjectAspectQualifier = 0 + directionQualifierEnum subjectDirectionQualifier = 0 + string objectAspectQualifier = 0 + directionQualifierEnum objectDirectionQualifier = 0 + string qualifiedPredicate = 0 biologicalSex sexQualifier = 0 integer hasCount = 0 integer hasTotal = 0 @@ -6255,9 +6303,9 @@ message WebPage repeated string keywords = 0 repeated uriorcurie meshTerms = 0 repeated uriorcurie xref = 0 + repeated string publicationType = 0 string id = 0 labelType name = 0 - repeated string publicationType = 0 } message Zygosity { diff --git a/project/shacl/biolink_model.shacl.ttl b/project/shacl/biolink_model.shacl.ttl index 9f8acf0cb..2b52df781 100644 --- a/project/shacl/biolink_model.shacl.ttl +++ b/project/shacl/biolink_model.shacl.ttl @@ -10,35 +10,32 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of a chromatinized genome that has been measured to be more accessible to an enzyme such as DNase-I or Tn5 Transpose" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; @@ -47,41 +44,68 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ] ; sh:targetClass biolink:AccessibleDnaRegion . biolink:Activity a sh:NodeShape ; sh:closed true ; sh:description "An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; @@ -90,45 +114,21 @@ biolink:Activity a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ] ; + sh:path rdf:type ] ; sh:targetClass biolink:Activity . biolink:ActivityAndBehavior a sh:NodeShape ; @@ -140,53 +140,53 @@ biolink:ActivityAndBehavior a sh:NodeShape ; biolink:AdministrativeEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ] ; @@ -195,324 +195,321 @@ biolink:AdministrativeEntity a sh:NodeShape ; biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 2 ; + sh:path rdf:object ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityAssociation . biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the structure at a later time" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at a later time" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; @@ -524,99 +521,63 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:AnatomicalEntity ; sh:description "the whole" ; sh:maxCount 1 ; @@ -624,29 +585,46 @@ biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:AnatomicalEntity ; sh:description "the part" ; sh:maxCount 1 ; @@ -655,34 +633,54 @@ biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -690,15 +688,17 @@ biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . biolink:Annotation a sh:NodeShape ; @@ -711,197 +711,200 @@ biolink:Article a sh:NodeShape ; sh:closed true ; sh:description "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 19 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 5 ; - sh:path biolink:pages ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:creation_date ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 15 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:issue ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 17 ; + sh:path biolink:synonym ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:iso_abbreviation ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ], + sh:order 16 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 11 ; sh:path biolink:license ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:id ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:authors ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 7 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:deprecated ], + sh:order 6 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:volume ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:rights ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:order 20 ; - sh:path rdf:type ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path rdfs:label ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ], + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:format ], + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 10 ; + sh:path dct:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:has_attribute ], [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:published_in ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 14 ; - sh:path biolink:provided_by ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 5 ; + sh:path biolink:pages ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 20 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 23 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 16 ; - sh:path biolink:synonym ] ; + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:format ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path rdfs:label ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 7 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:order 21 ; + sh:path rdf:type ] ; sh:targetClass biolink:Article . biolink:Association a sh:NodeShape ; sh:closed true ; sh:description "A typed association between two entities, supported by evidence" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -909,86 +912,88 @@ biolink:Association a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + sh:order 6 ; + sh:path biolink:publications ] ; sh:targetClass biolink:Association . biolink:Bacterium a sh:NodeShape ; @@ -1003,292 +1008,317 @@ biolink:Bacterium a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Bacterium . biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:double ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:class biolink:BehavioralFeature ; + sh:description "behavioral feature that is the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_percentage ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 36 ; + sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Behavior ; + sh:description "behavior that is the subject of the association" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:BehavioralFeature ; - sh:description "behavioral feature that is the object of the association" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:Behavior ; - sh:description "behavior that is the subject of the association" ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ] ; + sh:order 23 ; + sh:path biolink:object_namespace ] ; sh:targetClass biolink:BehaviorToBehavioralFeatureAssociation . biolink:BehavioralExposure a sh:NodeShape ; sh:closed true ; sh:description "A behavioral exposure is a factor relating to behavior impacting an individual." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; @@ -1296,53 +1326,41 @@ biolink:BehavioralExposure a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ] ; + sh:order 0 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:BehavioralExposure . biolink:BehavioralOutcome a sh:NodeShape ; @@ -1354,95 +1372,93 @@ biolink:BehavioralOutcome a sh:NodeShape ; biolink:BiologicalEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:BiologicalEntity . biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:closed true ; sh:description "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 5 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_output ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_input ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -1453,23 +1469,11 @@ biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:enabled_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -1480,56 +1484,42 @@ biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_output ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ] ; + sh:order 0 ; + sh:path biolink:has_input ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:BiologicalProcessOrActivity . biolink:BioticExposure a sh:NodeShape ; sh:closed true ; sh:description "An external biotic exposure is an intake of (sometimes pathological) biological organisms (including viruses)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], @@ -1540,33 +1530,61 @@ biolink:BioticExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; @@ -1577,95 +1595,100 @@ biolink:Book a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Books should have industry-standard identifier such as from ISBN." ; + sh:property [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "Should generally be set to an ontology class defined term for 'book'." ; - sh:order 16 ; + sh:order 17 ; sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], [ sh:datatype xsd:string ; + sh:description "Books should have industry-standard identifier such as from ISBN." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 14 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 15 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], + sh:order 7 ; + sh:path biolink:license ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 18 ; + sh:order 19 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; + sh:order 13 ; sh:path biolink:synonym ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 10 ; sh:path biolink:creation_date ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ] ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Book . biolink:BookChapter a sh:NodeShape ; @@ -1673,554 +1696,603 @@ biolink:BookChapter a sh:NodeShape ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 18 ; + sh:order 19 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:order 19 ; - sh:path rdf:type ], + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 9 ; + sh:path dct:type ], + [ sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:published_in ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:volume ], [ sh:datatype xsd:string ; sh:description "chapter of a book" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:chapter ], + [ sh:datatype xsd:string ; + sh:order 20 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 23 ; + sh:order 24 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:rights ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:has_attribute ], + sh:order 3 ; + sh:path biolink:authors ], [ sh:description "mesh terms tagging a publication" ; sh:order 7 ; sh:path biolink:mesh_terms ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 14 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 4 ; + sh:path biolink:pages ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:rights ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 15 ; - sh:path biolink:synonym ], - [ sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:volume ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 20 ; + sh:order 21 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 13 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 4 ; - sh:path biolink:pages ], + sh:order 22 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 10 ; sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 16 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 12 ; sh:path biolink:format ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 16 ; + sh:order 17 ; sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:creation_date ] ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:BookChapter . biolink:CaseToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An abstract association for use where the case is the subject" ; sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:CaseToEntityAssociationMixin . - -biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:severity_qualifier ], + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:Case ; sh:description "the case (e.g. patient) that has the property" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; + sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:CaseToEntityAssociationMixin . + +biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; + sh:order 2 ; sh:path rdf:object ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 32 ; + sh:path dct:description ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ] ; - sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . - -biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is shown to cause the disease." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 41 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; + sh:order 27 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 40 ; + sh:order 38 ; sh:path biolink:has_percentage ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:class biolink:Case ; + sh:description "the case (e.g. patient) that has the property" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; + sh:order 3 ; sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; + sh:order 22 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ] ; + sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . + +biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:order 34 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is shown to cause the disease." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 0 ; + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ] ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:CausalGeneToDiseaseAssociation . biolink:Cell a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], @@ -2228,105 +2300,163 @@ biolink:Cell a sh:NodeShape ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Cell . biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:CellLine ; + sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -2334,738 +2464,712 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:CellLine ; - sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:onset_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 36 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "The relationship to the disease" ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; + sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . + +biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . - -biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ] ; + sh:path biolink:negated ] ; sh:targetClass biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An relationship between a cell line and another entity" ; sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:CellLine ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:CellLineToEntityAssociationMixin . biolink:CellularOrganism a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:order 1 ; + sh:path rdfs:label ] ; sh:targetClass biolink:CellularOrganism . biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 45 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:object_category ], + sh:order 22 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:negated ], - [ sh:description "a point in time" ; + sh:order 36 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 31 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 23 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:AnatomicalEntity ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:order 41 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 14 ; + sh:path biolink:species_context_qualifier ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:knowledge_source ], - [ sh:in ( "metabolite" ) ; + sh:order 11 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 44 ; + sh:path rdf:type ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 7 ; + sh:path biolink:object_part_qualifier ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; + sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path rdf:object ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 24 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 36 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:causal_mechanism_qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], + sh:order 21 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 17 ; + sh:order 19 ; sh:path biolink:qualifier ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 6 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:original_object ], + sh:order 48 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:subject_category_closure ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:qualifiers ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 37 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 17 ; + sh:path rdf:object ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 44 ; + sh:order 46 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 45 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 28 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 39 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 30 ; - sh:path biolink:subject_closure ], + sh:order 35 ; + sh:path biolink:object_category_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 14 ; + sh:order 16 ; sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 37 ; - sh:path biolink:object_label_closure ], + sh:order 30 ; + sh:path biolink:subject_category ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 42 ; - sh:path rdf:type ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path rdf:subject ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 29 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:has_evidence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 25 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 38 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 32 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; sh:order 40 ; - sh:path biolink:iri ], + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 43 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualified_predicate ] ; - sh:targetClass biolink:ChemicalAffectsGeneAssociation . - -biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 13 ; + sh:path biolink:qualified_predicate ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; + sh:order 34 ; sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 9 ; + sh:path biolink:object_context_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; + sh:order 47 ; + sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; + sh:path biolink:subject_direction_qualifier ] ; + sh:targetClass biolink:ChemicalAffectsGeneAssociation . + +biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -3073,99 +3177,48 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; - sh:path biolink:object_category ] ; - sh:targetClass biolink:ChemicalEntityAssessesNamedThingAssociation . - -biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A regulatory relationship between two genes" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; + sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "the direction is always from regulator to regulated" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:ChemicalEntityAssessesNamedThingAssociation . + +biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A regulatory relationship between two genes" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -3177,99 +3230,163 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "the direction is always from regulator to regulated" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:object_direction_qualifier ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ] ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ] ; sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . biolink:ChemicalEntityOrProteinOrPolypeptide a sh:NodeShape ; @@ -3282,59 +3399,58 @@ biolink:ChemicalEntityToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a chemical entity and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:ChemicalEntityToEntityAssociationMixin . - -biolink:ChemicalExposure a sh:NodeShape ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ] ; + sh:targetClass biolink:ChemicalEntityToEntityAssociationMixin . + +biolink:ChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A chemical exposure is an intake of a particular chemical entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:timepoint ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -3342,230 +3458,255 @@ biolink:ChemicalExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_attribute_type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path biolink:has_quantitative_value ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:timepoint ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:ChemicalExposure . biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:closed true ; sh:description "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 21 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_closure ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:nodeKind sh:BlankNode ; + sh:order 10 ; + sh:path rdf:object ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_part_qualifier ], - [ sh:description "a human-readable description of an entity" ; + sh:order 38 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:publications ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:order 22 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 15 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:timepoint ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:subject_context_qualifier ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_form_or_variant_qualifier ], + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 37 ; + sh:path rdf:type ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_part_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 18 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 32 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 9 ; + sh:path rdf:predicate ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:object_context_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:original_subject ], + sh:order 14 ; + sh:path biolink:publications ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 36 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 37 ; - sh:path rdf:type ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 34 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:order 20 ; + sh:path biolink:original_subject ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_evidence ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 8 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:qualifiers ], + sh:order 40 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 34 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 32 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:original_object ], + sh:order 41 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 18 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:in ( "metabolite" ) ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_closure ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 10 ; - sh:path rdf:object ], + sh:order 28 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path rdfs:label ] ; + sh:order 16 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:ChemicalGeneInteractionAssociation . biolink:ChemicalOrDrugOrTreatment a sh:NodeShape ; @@ -3577,175 +3718,175 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:closed true ; sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 32 ; + sh:path dct:description ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:FDA_adverse_event_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_adverse_event_level ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ] ; + sh:order 7 ; + sh:path biolink:publications ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; @@ -3753,174 +3894,174 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_adverse_event_level ], + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ] ; + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:FDA_adverse_event_level ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToChemicalAssociation a sh:NodeShape ; @@ -3932,96 +4073,59 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -4029,24 +4133,20 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -4055,58 +4155,97 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; - sh:path biolink:publications ] ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:ChemicalToChemicalAssociation . biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:closed true ; sh:description "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -4114,47 +4253,85 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:order 27 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the upstream chemical entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:catalyst_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:class biolink:ChemicalEntity ; sh:description "the downstream chemical entity" ; sh:maxCount 1 ; @@ -4162,131 +4339,120 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:publications ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the upstream chemical entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:path biolink:object_category_closure ] ; + sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . + +biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; + sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:catalyst_qualifier ] ; - sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . - -biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; @@ -4297,24 +4463,21 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "the disease or phenotype that is affected by the chemical" ; sh:maxCount 1 ; @@ -4322,85 +4485,68 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -4408,89 +4554,137 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a chemical entity and another entity" ; sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:ChemicalToEntityAssociationMixin . biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:closed true ; sh:description "An interaction between a chemical entity and a biological process or pathway." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that is affected by the chemical" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity that is affecting the pathway" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -4501,153 +4695,108 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that is affected by the chemical" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity that is affecting the pathway" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 6 ; + sh:path biolink:publications ] ; sh:targetClass biolink:ChemicalToPathwayAssociation . biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a chi squared analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -4659,70 +4808,75 @@ biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:ChiSquaredAnalysisResult . biolink:ClinicalCourse a sh:NodeShape ; sh:closed true ; sh:description "The course a disease typically takes from its onset, progression in time, and eventual resolution or death of the affected individual" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -4730,15 +4884,13 @@ biolink:ClinicalCourse a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; @@ -4748,17 +4900,25 @@ biolink:ClinicalCourse a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:ClinicalCourse . biolink:ClinicalEntity a sh:NodeShape ; @@ -4766,130 +4926,126 @@ biolink:ClinicalEntity a sh:NodeShape ; sh:description "Any entity or process that exists in the clinical domain and outside the biological realm. Diseases are placed under biological entities" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 4 ; + sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ] ; sh:targetClass biolink:ClinicalEntity . biolink:ClinicalFinding a sh:NodeShape ; sh:closed true ; sh:description "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:class biolink:ClinicalAttribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + sh:path rdf:type ] ; sh:targetClass biolink:ClinicalFinding . biolink:ClinicalIntervention a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], @@ -4899,26 +5055,31 @@ biolink:ClinicalIntervention a sh:NodeShape ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; @@ -4926,11 +5087,10 @@ biolink:ClinicalIntervention a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; @@ -4941,93 +5101,22 @@ biolink:ClinicalMeasurement a sh:NodeShape ; sh:closed true ; sh:description "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ] ; - sh:targetClass biolink:ClinicalMeasurement . - -biolink:ClinicalModifier a sh:NodeShape ; - sh:closed true ; - sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -5038,6 +5127,22 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -5048,6 +5153,32 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ] ; + sh:targetClass biolink:ClinicalMeasurement . + +biolink:ClinicalModifier a sh:NodeShape ; + sh:closed true ; + sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -5055,29 +5186,58 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -5088,7 +5248,12 @@ biolink:ClinicalModifier a sh:NodeShape ; biolink:ClinicalTrial a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -5099,178 +5264,173 @@ biolink:ClinicalTrial a sh:NodeShape ; sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ] ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ] ; sh:targetClass biolink:ClinicalTrial . biolink:CodingSequence a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 2 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:id ] ; sh:targetClass biolink:CodingSequence . biolink:Cohort a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group who share common characteristics. A cohort 'study' is a particular form of longitudinal study that samples a cohort, performing a cross-section at intervals through time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Cohort . biolink:CommonDataElement a sh:NodeShape ; @@ -5280,245 +5440,245 @@ biolink:CommonDataElement a sh:NodeShape ; sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ] ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:CommonDataElement . biolink:ComplexChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A complex chemical exposure is an intake of a chemical mixture (e.g. gasoline), other than a drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:QuantityValue ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:ComplexChemicalExposure . biolink:ComplexMolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A complex molecular mixture is a chemical mixture composed of two or more molecular entities with unknown concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:class biolink:ChemicalMixture ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "a human-readable description of an entity" ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ] ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:ComplexMolecularMixture . biolink:ConceptCountAnalysisResult a sh:NodeShape ; @@ -5527,48 +5687,35 @@ biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; @@ -5579,103 +5726,125 @@ biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ] ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:ConceptCountAnalysisResult . biolink:ConfidenceLevel a sh:NodeShape ; sh:closed true ; sh:description "Level of confidence in a statement" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ] ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:ConfidenceLevel . biolink:ContributorAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; @@ -5686,36 +5855,50 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:InformationContentEntity ; - sh:description "information content entity which an agent has helped realise" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:Agent ; sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; sh:maxCount 1 ; @@ -5723,77 +5906,56 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; @@ -5803,302 +5965,331 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:InformationContentEntity ; + sh:description "information content entity which an agent has helped realise" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:ContributorAssociation . biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:datatype xsd:double ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is shown to correlate with the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 5 ; + sh:path biolink:sex_qualifier ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 34 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_count ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ] ; + sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . + +biolink:DatasetSummary a sh:NodeShape ; + sh:closed true ; + sh:description "an item that holds summary level information about a dataset." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], + sh:order 0 ; + sh:path biolink:source_web_page ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 36 ; + sh:order 17 ; sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 15 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is shown to correlate with the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], + sh:order 16 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ] ; - sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . - -biolink:DatasetSummary a sh:NodeShape ; - sh:closed true ; - sh:description "an item that holds summary level information about a dataset." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path schema:logo ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; - sh:path schema:logo ], + sh:order 4 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:source_web_page ], + sh:order 3 ; + sh:path biolink:rights ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:format ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:creation_date ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 12 ; @@ -6107,120 +6298,94 @@ biolink:DatasetSummary a sh:NodeShape ; [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:license ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:deprecated ] ; + sh:path biolink:license ] ; sh:targetClass biolink:DatasetSummary . biolink:DatasetVersion a sh:NodeShape ; sh:closed true ; sh:description "an item that holds version level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:class biolink:DatasetDistribution ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path dct:distribution ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:format ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:license ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:has_attribute ], + sh:order 1 ; + sh:path biolink:ingest_date ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 18 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 16 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:iri ], - [ sh:class biolink:DatasetDistribution ; + [ sh:class biolink:Dataset ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path dct:distribution ], + sh:order 0 ; + sh:path biolink:has_dataset ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:ingest_date ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 6 ; - sh:path biolink:creation_date ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:class biolink:Dataset ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_dataset ] ; + sh:path biolink:creation_date ] ; sh:targetClass biolink:DatasetVersion . biolink:DiagnosticAid a sh:NodeShape ; @@ -6232,19 +6397,11 @@ biolink:DiagnosticAid a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; @@ -6252,93 +6409,103 @@ biolink:DiagnosticAid a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ] ; sh:targetClass biolink:DiagnosticAid . biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:closed true ; sh:description "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -6349,12 +6516,10 @@ biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ] ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureExposure . biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; @@ -6366,41 +6531,89 @@ biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:class biolink:GeneticInheritance ; + sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; @@ -6411,126 +6624,97 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:GeneticInheritance ; - sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -6542,224 +6726,256 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "anatomical entity in which the disease or feature is found." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "anatomical entity in which the disease or feature is found." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . + +biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:object ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . - -biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:DiseaseToEntityAssociationMixin . biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an exposure event and a disease." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:ExposureEvent ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -6767,68 +6983,42 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -6839,307 +7029,309 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:DiseaseToExposureEventAssociation . biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; + sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ] ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:DiseaseToPhenotypicFeatureAssociation . biolink:DrugExposure a sh:NodeShape ; sh:closed true ; sh:description "A drug exposure is an intake of a particular drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 1 ; sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; @@ -7147,10 +7339,20 @@ biolink:DrugExposure a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -7159,17 +7361,31 @@ biolink:DrugExposure a sh:NodeShape ; sh:order 3 ; sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ] ; sh:targetClass biolink:DrugExposure . biolink:DrugLabel a sh:NodeShape ; @@ -7177,99 +7393,123 @@ biolink:DrugLabel a sh:NodeShape ; sh:description "a document accompanying a drug or its container that provides written, printed or graphic information about the drug, including drug contents, specific instructions or warnings for administration, storage and disposal instructions, etc." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; sh:path biolink:mesh_terms ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 15 ; sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 12 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 18 ; + sh:order 19 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 13 ; + sh:order 14 ; sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 6 ; + sh:order 7 ; sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:format ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; sh:order 17 ; - sh:path rdfs:label ] ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:DrugLabel . biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a drug and another entity" ; sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:DrugToEntityAssociationMixin . biolink:DrugToGeneAssociation a sh:NodeShape ; @@ -7277,194 +7517,180 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:description "An interaction between a drug and a gene or gene product." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Drug ; - sh:description "the drug that is an interactor" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product that is affected by the drug" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the gene or gene product that is affected by the drug" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:DrugToGeneAssociation . biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:closed true ; sh:description "drug to gene interaction exposure is a drug exposure is where the interactions of the drug with specific genes are known to constitute an 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 11 ; - sh:path biolink:synonym ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 1 ; @@ -7473,6 +7699,17 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 8 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -7480,44 +7717,47 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 3 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 13 ; sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path dct:description ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -7528,357 +7768,320 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "connects an association to an instance of supporting evidence" ; - sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; + sh:order 5 ; sh:path biolink:sex_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_total ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:double ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:severity_qualifier ], + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 29 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ] ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "connects an association to an instance of supporting evidence" ; + sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ] ; sh:targetClass biolink:DruggableGeneToDiseaseAssociation . biolink:Entity a sh:NodeShape ; sh:closed false ; sh:description "Root Biolink Model class for all things and informational relationships, real or imagined." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 3 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 5 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 2 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 3 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 2 ; - sh:path biolink:category ], + sh:order 7 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ] ; + sh:order 1 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Entity . biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; sh:path rdf:predicate ], + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], + sh:order 32 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 28 ; - sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 8 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -7886,291 +8089,439 @@ biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:order 18 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], + sh:order 5 ; + sh:path biolink:negated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], + sh:order 10 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:max_research_phase ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ] ; + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:EntityToDiseaseAssociation . biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "mixin class for any association whose object (target node) is a disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:property [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:onset_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 8 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:severity_qualifier ] ; + sh:order 6 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ] ; sh:targetClass biolink:EntityToDiseaseAssociationMixin . biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between some entity and an exposure event." ; sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:EntityToExposureEventAssociationMixin . - -biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; - sh:closed false ; - sh:description "Qualifiers for entity to disease or phenotype associations." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:property [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; + sh:minCount 1 ; sh:order 1 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:severity_qualifier ] ; - sh:targetClass biolink:EntityToFeatureOrDiseaseQualifiersMixin . + sh:path rdf:subject ] ; + sh:targetClass biolink:EntityToExposureEventAssociationMixin . -biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; +biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:closed false ; - sh:description "An association between some entity and an outcome" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:EntityToOutcomeAssociationMixin . - -biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; + sh:description "Qualifiers for entity to disease or phenotype associations." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; + sh:order 8 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 6 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], + sh:order 4 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ] ; + sh:targetClass biolink:EntityToFeatureOrDiseaseQualifiersMixin . + +biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:description "An association between some entity and an outcome" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; + sh:order 0 ; sh:path rdf:subject ], + [ sh:class biolink:Outcome ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:EntityToOutcomeAssociationMixin . + +biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 1 ; + sh:path biolink:max_research_phase ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 7 ; + sh:path biolink:qualifiers ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 30 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:max_research_phase ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 6 ; + sh:order 35 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 6 ; sh:path biolink:qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 29 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -8178,262 +8529,286 @@ biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 18 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ] ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociation . biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:double ; + sh:property [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 7 ; sh:path biolink:has_percentage ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; + sh:order 3 ; sh:path biolink:sex_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 3 ; + sh:order 6 ; sh:path biolink:has_quotient ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 4 ; sh:path biolink:has_count ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:severity_qualifier ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 2 ; + sh:order 5 ; sh:path biolink:has_total ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:onset_qualifier ] ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociationMixin . biolink:EnvironmentalExposure a sh:NodeShape ; sh:closed true ; sh:description "A environmental exposure is a factor relating to abiotic processes in the environment including sunlight (UV-B), atmospheric (heat, cold, general pollution) and water-born contaminants." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:full_name ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ] ; + sh:order 1 ; + sh:path rdfs:label ] ; sh:targetClass biolink:EnvironmentalExposure . biolink:EnvironmentalFeature a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:EnvironmentalFeature . biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], + sh:order 14 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:max_tolerated_dose ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:is_toxic ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; @@ -8447,70 +8822,93 @@ biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ] ; - sh:targetClass biolink:EnvironmentalFoodContaminant . - -biolink:EnvironmentalProcess a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 9 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:trade_name ] ; + sh:targetClass biolink:EnvironmentalFoodContaminant . + +biolink:EnvironmentalProcess a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 4 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:EnvironmentalProcess . biolink:EpidemiologicalOutcome a sh:NodeShape ; @@ -8533,55 +8931,55 @@ biolink:Event a sh:NodeShape ; sh:description "Something that happens at a given place and time." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Event . biolink:ExonToTranscriptRelationship a sh:NodeShape ; @@ -8593,38 +8991,52 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:Exon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8632,70 +9044,81 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -8706,575 +9129,600 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:Transcript ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ] ; sh:targetClass biolink:ExonToTranscriptRelationship . biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an exposure event and an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:Outcome ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:population_context_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:temporal_context_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], + sh:order 10 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 2 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 29 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 12 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:class biolink:Outcome ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 1 ; + sh:path biolink:temporal_context_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 33 ; sh:path dct:description ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:population_context_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 6 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ] ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:ExposureEventToOutcomeAssociation . biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:integer ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 39 ; - sh:path biolink:severity_qualifier ], + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:double ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], + sh:order 38 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ] ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:ExposureEventToPhenotypicFeatureAssociation . biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for disease or phenotype to entity associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 6 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:severity_qualifier ] ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path rdf:object ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ] ; sh:targetClass biolink:FeatureOrDiseaseQualifiersToEntityMixin . biolink:Food a sh:NodeShape ; sh:closed true ; sh:description "A substance consumed by a living organism as a source of nutrition" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 9 ; sh:path biolink:provided_by ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 12 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:class biolink:ChemicalMixture ; - sh:description "" ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ] ; + sh:order 20 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Food . biolink:FoodAdditive a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:class biolink:ChemicalEntity ; + sh:description "" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], @@ -9283,35 +9731,38 @@ biolink:FoodAdditive a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], + sh:order 13 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; @@ -9319,142 +9770,141 @@ biolink:FoodAdditive a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; sh:path biolink:synonym ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:is_toxic ] ; + sh:path biolink:is_toxic ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ] ; sh:targetClass biolink:FoodAdditive . biolink:FrequencyQualifierMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifier for frequency type associations" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:frequency_qualifier ] ; + sh:path biolink:frequency_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:FrequencyQualifierMixin . biolink:FrequencyQuantifier a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; + sh:property [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:has_percentage ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:has_total ], - [ sh:datatype xsd:double ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ] ; + sh:order 0 ; + sh:path biolink:has_count ] ; sh:targetClass biolink:FrequencyQuantifier . biolink:FunctionalAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:MacromolecularMachineMixin ; sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; @@ -9467,382 +9917,418 @@ biolink:FunctionalAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ] ; sh:targetClass biolink:FunctionalAssociation . biolink:Fungus a sh:NodeShape ; sh:closed true ; sh:description "A kingdom of eukaryotic, heterotrophic organisms that live as saprobes or parasites, including mushrooms, yeasts, smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi refer to those that grow as multicellular colonies (mushrooms and molds)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Fungus . biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 47 ; + sh:path dct:description ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 18 ; + sh:path rdf:object ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:knowledge_source ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 41 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:object_closure ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:species_context_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 33 ; + sh:order 36 ; sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:object_category ], + sh:order 31 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 30 ; + sh:order 33 ; sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 45 ; - sh:path biolink:has_attribute ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:object_part_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 20 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 25 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:subject_category ], + sh:order 30 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 39 ; + sh:order 42 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 43 ; - sh:path rdfs:label ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 11 ; + sh:path biolink:object_derivative_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:original_subject ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:order 49 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 36 ; - sh:path biolink:subject_label_closure ], + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 23 ; + sh:order 26 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:AnatomicalEntity ; + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:object_namespace ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:order 28 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:causal_mechanism_qualifier ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 46 ; + sh:path rdfs:label ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 16 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 45 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 37 ; + sh:path biolink:subject_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:original_predicate ], + sh:order 43 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 35 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:primary_knowledge_source ], - [ sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], + sh:order 48 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 44 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 42 ; - sh:path rdf:type ], + sh:order 32 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:qualifier ], + sh:order 38 ; + sh:path biolink:object_namespace ], [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:object_context_qualifier ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 14 ; sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:deprecated ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 41 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 14 ; + sh:order 17 ; sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 40 ; + sh:path biolink:object_label_closure ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_evidence ], + sh:order 22 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 24 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 13 ; - sh:path rdf:subject ], - [ sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 29 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:class biolink:AnatomicalEntity ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:qualifiers ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], + sh:order 23 ; + sh:path biolink:has_evidence ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 37 ; - sh:path biolink:object_label_closure ] ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:GeneAffectsChemicalAssociation . biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; @@ -9853,244 +10339,249 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:deprecated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:qualifiers ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 1 ; sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_total ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ] ; + sh:order 37 ; + sh:path biolink:has_count ] ; sh:targetClass biolink:GeneAsAModelOfDiseaseAssociation . biolink:GeneExpressionMixin a sh:NodeShape ; sh:closed false ; sh:description "Observed gene expression intensity, context (site, stage) and associated phenotypic status within which the expression occurs." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:class biolink:OntologyClass ; sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:quantifier_qualifier ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ] ; + sh:order 1 ; + sh:path biolink:expression_site ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ] ; sh:targetClass biolink:GeneExpressionMixin . biolink:GeneGroupingMixin a sh:NodeShape ; @@ -10107,236 +10598,242 @@ biolink:GeneGroupingMixin a sh:NodeShape ; biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 43 ; - sh:path biolink:onset_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_total ], + sh:order 41 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], + sh:order 26 ; + sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 15 ; + sh:path biolink:timepoint ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 30 ; sh:path biolink:id ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:has_percentage ], + sh:order 8 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], + sh:order 39 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:double ; + sh:order 18 ; + sh:path biolink:original_object ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 45 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], + sh:order 23 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_count ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], + sh:order 43 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 34 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 10 ; + sh:path biolink:publications ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:severity_qualifier ], + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 14 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 4 ; - sh:path rdf:subject ] ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:negated ] ; sh:targetClass biolink:GeneHasVariantThatContributesToDiseaseAssociation . biolink:GeneProductIsoformMixin a sh:NodeShape ; sh:closed false ; sh:description "This is an abstract class that can be mixed in with different kinds of gene products to indicate that the gene product is intended to represent a specific isoform rather than a canonical or reference or generic product. The designation of canonical or reference may be arbitrary, or it may represent the superclass of all isoforms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ] ; @@ -10350,488 +10847,569 @@ biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 33 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:severity_qualifier ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:EvidenceType ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_total ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_count ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; sh:order 3 ; - sh:path rdf:subject ], + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:path biolink:subject_category_closure ] ; + sh:targetClass biolink:GeneToDiseaseAssociation . + +biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 29 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ] ; - sh:targetClass biolink:GeneToDiseaseAssociation . - -biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:subject ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_percentage ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 34 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; + sh:order 4 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], + sh:order 38 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ] ; + sh:targetClass biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . + +biolink:GeneToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:description "gene that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 3 ; + sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:GeneToEntityAssociationMixin . + +biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 6 ; + sh:order 5 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:description "expression relationship" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; + sh:order 31 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 35 ; + sh:path biolink:deprecated ], + [ sh:class biolink:LifeStage ; + sh:description "stage at which the gene is expressed in the site" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:sex_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:path biolink:stage_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 6 ; sh:path biolink:qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 29 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 9 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "can be used to indicate magnitude, or also ranking" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ] ; - sh:targetClass biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . - -biolink:GeneToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:GeneToEntityAssociationMixin . - -biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:quantifier_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "expression relationship" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which the gene is expressed" ; sh:maxCount 1 ; @@ -10839,11 +11417,11 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; sh:maxCount 1 ; @@ -10851,118 +11429,66 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:LifeStage ; - sh:description "stage at which the gene is expressed in the site" ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:stage_qualifier ], + sh:order 34 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "can be used to indicate magnitude, or also ranking" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:quantifier_qualifier ] ; + sh:order 13 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:GeneToExpressionSiteAssociation . biolink:GeneToGeneAssociation a sh:NodeShape ; @@ -10970,131 +11496,139 @@ biolink:GeneToGeneAssociation a sh:NodeShape ; sh:description "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -11105,860 +11639,576 @@ biolink:GeneToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ] ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ] ; sh:targetClass biolink:GeneToGeneAssociation . biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; sh:closed true ; sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 33 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], + sh:order 16 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], + sh:order 8 ; + sh:path biolink:qualifier ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 32 ; sh:path biolink:category ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:order 7 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path biolink:publications ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:phenotypic_state ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:expression_site ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:timepoint ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ] ; - sh:targetClass biolink:GeneToGeneCoexpressionAssociation . - -biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "membership of the gene in the given gene family." ; + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; + sh:order 5 ; sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 26 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; + sh:order 25 ; sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 18 ; sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 9 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:BlankNode ; + sh:order 6 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; + sh:order 20 ; sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; + sh:order 27 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:path biolink:knowledge_source ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 4 ; + sh:path rdf:subject ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:GeneFamily ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 37 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:GeneToGeneCoexpressionAssociation . + +biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ] ; - sh:targetClass biolink:GeneToGeneFamilyAssociation . - -biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "homology relationship type" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:GeneFamily ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + [ sh:description "membership of the gene in the given gene family." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:GeneToGeneHomologyAssociation . + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ] ; + sh:targetClass biolink:GeneToGeneFamilyAssociation . -biolink:GeneToGeneProductRelationship a sh:NodeShape ; +biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A gene is transcribed and potentially translated to a gene product" ; + sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; + sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:GeneProductMixin ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "homology relationship type" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ] ; - sh:targetClass biolink:GeneToGeneProductRelationship . - -biolink:GeneToGoTermAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Gene ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 5 ; + sh:path biolink:qualifiers ] ; + sh:targetClass biolink:GeneToGeneHomologyAssociation . + +biolink:GeneToGeneProductRelationship a sh:NodeShape ; + sh:closed true ; + sh:description "A gene is transcribed and potentially translated to a gene product" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], @@ -11972,1233 +12222,1101 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; - sh:targetClass biolink:GeneToGoTermAssociation . - -biolink:GeneToPathwayAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a gene or gene product and a biological process or pathway." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that includes or is affected by the gene or gene product" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:GeneProductMixin ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product entity that participates or influences the pathway" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; + sh:order 26 ; + sh:path biolink:id ] ; + sh:targetClass biolink:GeneToGeneProductRelationship . + +biolink:GeneToGoTermAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ] ; - sh:targetClass biolink:GeneToPathwayAssociation . - -biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 28 ; + sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:onset_qualifier ], + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 6 ; + sh:order 3 ; sh:path biolink:negated ], - [ sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 1 ; sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; + sh:order 26 ; sh:path biolink:id ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Gene ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:GeneToGoTermAssociation . + +biolink:GeneToPathwayAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a gene or gene product and a biological process or pathway." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; + sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:description "the gene or gene product entity that participates or influences the pathway" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 3 ; + sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:subject_category ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; + sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ] ; - sh:targetClass biolink:GeneToPhenotypicFeatureAssociation . - -biolink:Genome a sh:NodeShape ; - sh:closed true ; - sh:description "A genome is the sum of genetic material within a cell or virion." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path biolink:id ], + sh:path rdf:predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that includes or is affected by the gene or gene product" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:Genome . + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:GeneToPathwayAssociation . -biolink:GenomicBackgroundExposure a sh:NodeShape ; +biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 14 ; - sh:path biolink:synonym ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_qualitative_value ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:order 16 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; sh:path rdf:type ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 30 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 29 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:deprecated ], - [ sh:description "a point in time" ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 12 ; - sh:path biolink:xref ], + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:full_name ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 8 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:GenomicBackgroundExposure . - -biolink:GenomicEntity a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "connects a genomic feature to its sequence" ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ] ; - sh:targetClass biolink:GenomicEntity . - -biolink:GenomicSequenceLocalization a sh:NodeShape ; - sh:closed true ; - sh:description "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:integer ; - sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:end_interbase_coordinate ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; + sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:order 6 ; - sh:path rdf:predicate ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path rdf:object ], - [ sh:datatype xsd:integer ; - sh:description "The position at which the subject nucleic acid entity starts on the chromosome or other entity to which it is located on. (ie: the start of the sequence being referenced is 0)." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:start_interbase_coordinate ], - [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; - sh:in ( "+" "-" "." "?" ) ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:genome_build ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 30 ; + sh:order 28 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; + sh:order 15 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; - sh:in ( "0" "1" "2" ) ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ] ; + sh:targetClass biolink:GeneToPhenotypicFeatureAssociation . + +biolink:Genome a sh:NodeShape ; + sh:closed true ; + sh:description "A genome is the sum of genetic material within a cell or virion." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:phase ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; + sh:order 10 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; - sh:in ( "+" "-" "." "?" ) ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:strand ], + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ] ; - sh:targetClass biolink:GenomicSequenceLocalization . + sh:order 11 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:Genome . -biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; +biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:closed true ; + sh:description "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The relationship to the disease" ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 4 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 6 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 7 ; + sh:path biolink:has_attribute_type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:severity_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 17 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; + sh:order 16 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 12 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 14 ; + sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 8 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 1 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 19 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 0 ; + sh:path biolink:timepoint ] ; + sh:targetClass biolink:GenomicBackgroundExposure . + +biolink:GenomicEntity a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ] ; + sh:targetClass biolink:GenomicEntity . + +biolink:GenomicSequenceLocalization a sh:NodeShape ; + sh:closed true ; + sh:description "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:Genotype ; - sh:description "A genotype that has a role in modeling the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 9 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; + sh:order 26 ; sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; - sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . - -biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 5 ; + sh:path rdf:subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; + sh:order 30 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; + sh:order 10 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; + sh:order 11 ; sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 27 ; + sh:order 32 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; + sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Disease ; - sh:description "a disease that is associated with that genotype" ; + sh:path biolink:strand ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; + sh:order 24 ; sh:path biolink:subject_category_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 16 ; sh:path biolink:timepoint ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + [ sh:datatype xsd:integer ; + sh:description "The position at which the subject nucleic acid entity starts on the chromosome or other entity to which it is located on. (ie: the start of the sequence being referenced is 0)." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 0 ; + sh:path biolink:start_interbase_coordinate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Genotype ; - sh:description "a genotype that is associated in some way with a disease state" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:integer ; + sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:end_interbase_coordinate ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 14 ; sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 17 ; sh:path biolink:original_subject ], - [ sh:description "E.g. is pathogenic for" ; + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; + sh:in ( "0" "1" "2" ) ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 4 ; + sh:path biolink:phase ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; + sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ] ; - sh:targetClass biolink:GenotypeToDiseaseAssociation . - -biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:GenotypeToEntityAssociationMixin . - -biolink:GenotypeToGeneAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 2 ; + sh:path biolink:genome_build ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 6 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 21 ; + sh:path biolink:object_category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 35 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:negated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 37 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; + sh:order 12 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:GenomicSequenceLocalization . + +biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Gene ; - sh:description "gene implicated in genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -13206,611 +13324,538 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "the relationship type used to connect genotype to gene" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; + sh:description "A genotype that has a role in modeling the disease." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ] ; - sh:targetClass biolink:GenotypeToGeneAssociation . - -biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 11 ; + sh:path biolink:timepoint ] ; + sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . + +biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "E.g. is pathogenic for" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 39 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Genotype ; - sh:description "child genotype" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ] ; - sh:targetClass biolink:GenotypeToGenotypePartAssociation . - -biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:Genotype ; - sh:description "genotype that is associated with the phenotypic feature" ; + sh:description "a genotype that is associated in some way with a disease state" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; + sh:order 0 ; sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 32 ; + sh:order 31 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Disease ; + sh:description "a disease that is associated with that genotype" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ] ; + sh:targetClass biolink:GenotypeToDiseaseAssociation . + +biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Genotype ; + sh:description "genotype that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:PhenotypicFeature ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:GenotypeToEntityAssociationMixin . + +biolink:GenotypeToGeneAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 28 ; + sh:order 27 ; sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; + sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:double ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; + sh:order 16 ; sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ] ; - sh:targetClass biolink:GenotypeToPhenotypicFeatureAssociation . - -biolink:GenotypeToVariantAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between a genotype and a sequence variant." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "the relationship type used to connect genotype to gene" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:SequenceVariant ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Gene ; sh:description "gene implicated in genotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -13818,1628 +13863,1324 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 32 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:GenotypeToGeneAssociation . + +biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:original_subject ] ; - sh:targetClass biolink:GenotypeToVariantAssociation . - -biolink:GenotypicSex a sh:NodeShape ; - sh:closed true ; - sh:description "An attribute corresponding to the genotypic sex of the individual, based upon genotypic composition of sex chromosomes." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 31 ; sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 26 ; sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Genotype ; + sh:description "child genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path biolink:has_quantitative_value ] ; - sh:targetClass biolink:GenotypicSex . + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; + sh:targetClass biolink:GenotypeToGenotypePartAssociation . -biolink:GeographicExposure a sh:NodeShape ; +biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A geographic exposure is a factor relating to geographic proximity to some impactful entity." ; + sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:path rdf:object ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; - sh:targetClass biolink:GeographicExposure . - -biolink:GeographicLocation a sh:NodeShape ; - sh:closed true ; - sh:description "a location that can be described in lat/long coordinates" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 27 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 34 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:float ; - sh:description "latitude" ; + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:latitude ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:float ; - sh:description "longitude" ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:longitude ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Genotype ; + sh:description "genotype that is associated with the phenotypic feature" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:has_attribute ], + sh:path biolink:timepoint ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:GeographicLocation . - -biolink:GeographicLocationAtTime a sh:NodeShape ; - sh:closed true ; - sh:description "a location that can be described in lat/long coordinates, for a particular time" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path biolink:qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:datatype xsd:float ; - sh:description "longitude" ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:longitude ], - [ sh:datatype xsd:float ; - sh:description "latitude" ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:latitude ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + sh:path biolink:has_evidence ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:GeographicLocationAtTime . - -biolink:GrossAnatomicalStructure a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 31 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 36 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:GrossAnatomicalStructure . + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ] ; + sh:targetClass biolink:GenotypeToPhenotypicFeatureAssociation . -biolink:Haplotype a sh:NodeShape ; +biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; + sh:description "Any association between a genotype and a sequence variant." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; + sh:order 30 ; sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 33 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ] ; - sh:targetClass biolink:Haplotype . - -biolink:Hospitalization a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:deprecated ], + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ] ; - sh:targetClass biolink:Hospitalization . - -biolink:HospitalizationOutcome a sh:NodeShape ; - sh:closed true ; - sh:description "An outcome resulting from an exposure event which is the increased manifestation of acute (e.g. emergency room visit) or chronic (inpatient) hospitalization." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:HospitalizationOutcome . - -biolink:Human a sh:NodeShape ; - sh:closed true ; - sh:description "A member of the the species Homo sapiens." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:Human . - -biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:SequenceVariant ; + sh:description "gene implicated in genotype" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:GenotypeToVariantAssociation . + +biolink:GenotypicSex a sh:NodeShape ; + sh:closed true ; + sh:description "An attribute corresponding to the genotypic sex of the individual, based upon genotypic composition of sex chromosomes." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 12 ; sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:original_object ], + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; - sh:targetClass biolink:InformationContentEntityToNamedThingAssociation . + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ] ; + sh:targetClass biolink:GenotypicSex . -biolink:Invertebrate a sh:NodeShape ; +biolink:GeographicExposure a sh:NodeShape ; sh:closed true ; - sh:description "An animal lacking a vertebral column. This group consists of 98% of all animal species." ; + sh:description "A geographic exposure is a factor relating to geographic proximity to some impactful entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; - sh:path rdfs:label ], + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; + sh:order 8 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; - sh:order 9 ; + sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 13 ; sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 9 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:Invertebrate . + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:GeographicExposure . -biolink:JournalArticle a sh:NodeShape ; +biolink:GeographicLocation a sh:NodeShape ; sh:closed true ; - sh:description "an article, typically presenting results of research, that is published in an issue of a scientific journal." ; + sh:description "a location that can be described in lat/long coordinates" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:property [ sh:datatype xsd:float ; + sh:description "latitude" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], + sh:order 0 ; + sh:path biolink:latitude ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 11 ; sh:path dct:description ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:rights ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; sh:order 7 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:format ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; sh:order 4 ; - sh:path biolink:authors ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 16 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; + sh:path biolink:full_name ], + [ sh:datatype xsd:float ; + sh:description "longitude" ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:iso_abbreviation ], + sh:path biolink:longitude ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 24 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 23 ; + sh:order 12 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], - [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 9 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 20 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 14 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 19 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 5 ; - sh:path biolink:pages ] ; - sh:targetClass biolink:JournalArticle . + sh:order 6 ; + sh:path biolink:id ] ; + sh:targetClass biolink:GeographicLocation . -biolink:LogOddsAnalysisResult a sh:NodeShape ; +biolink:GeographicLocationAtTime a sh:NodeShape ; sh:closed true ; - sh:description "A result of a log odds ratio analysis." ; + sh:description "a location that can be described in lat/long coordinates, for a particular time" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 6 ; + sh:order 5 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 8 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 15 ; + sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 12 ; sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:float ; + sh:description "latitude" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:latitude ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + sh:path biolink:xref ], + [ sh:datatype xsd:float ; + sh:description "longitude" ; sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:format ], + sh:path biolink:longitude ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ] ; - sh:targetClass biolink:LogOddsAnalysisResult . - -biolink:MacromolecularComplex a sh:NodeShape ; - sh:closed true ; - sh:description "A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; + sh:order 11 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 10 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:path rdf:type ] ; + sh:targetClass biolink:GeographicLocationAtTime . + +biolink:GrossAnatomicalStructure a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; + sh:order 3 ; sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:MacromolecularComplex . - -biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:GrossAnatomicalStructure . + +biolink:Haplotype a sh:NodeShape ; + sh:closed true ; + sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:BiologicalProcess ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 11 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:synonym ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 13 ; sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; - sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:Haplotype . -biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; +biolink:Hospitalization a sh:NodeShape ; sh:closed true ; - sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 11 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:CellularComponent ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:Hospitalization . + +biolink:HospitalizationOutcome a sh:NodeShape ; + sh:closed true ; + sh:description "An outcome resulting from an exposure event which is the increased manifestation of acute (e.g. emergency room visit) or chronic (inpatient) hospitalization." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:HospitalizationOutcome . + +biolink:Human a sh:NodeShape ; + sh:closed true ; + sh:description "A member of the the species Homo sapiens." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:Human . + +biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:original_subject ] ; - sh:targetClass biolink:MacromolecularMachineToCellularComponentAssociation . - -biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:description "an association which has a macromolecular machine mixin as a subject" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:MacromolecularMachineToEntityAssociationMixin . - -biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:MolecularActivity ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path rdf:predicate ] ; - sh:targetClass biolink:MacromolecularMachineToMolecularActivityAssociation . - -biolink:Mammal a sh:NodeShape ; - sh:closed true ; - sh:description "A member of the class Mammalia, a clade of endothermic amniotes distinguished from reptiles and birds by the possession of hair, three middle ear bones, mammary glands, and a neocortex" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:path rdf:predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ] ; + sh:targetClass biolink:InformationContentEntityToNamedThingAssociation . + +biolink:Invertebrate a sh:NodeShape ; + sh:closed true ; + sh:description "An animal lacking a vertebral column. This group consists of 98% of all animal species." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; @@ -15448,18 +15189,17 @@ biolink:Mammal a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -15470,629 +15210,674 @@ biolink:Mammal a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:Mammal . - -biolink:MappingCollection a sh:NodeShape ; - sh:closed false ; - sh:description "A collection of deprecated mappings." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:PredicateMapping ; - sh:description "A collection of relationships that are not used in biolink, but have biolink patterns that can be used to replace them. This is a temporary slot to help with the transition to the fully qualified predicate model in Biolink3." ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:predicate_mappings ] ; - sh:targetClass biolink:MappingCollection . + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; + sh:targetClass biolink:Invertebrate . -biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; +biolink:JournalArticle a sh:NodeShape ; sh:closed true ; - sh:description "An association between a material sample and the material entity from which it is derived." ; + sh:description "an article, typically presenting results of research, that is published in an issue of a scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "derivation relationship" ; + sh:property [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path biolink:issue ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 23 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 24 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 13 ; + sh:path biolink:format ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 15 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:iso_abbreviation ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 7 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:order 21 ; sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 18 ; + sh:path biolink:id ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 14 ; + sh:path biolink:creation_date ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:qualifier ], + sh:path biolink:authors ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 5 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:license ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:rights ], + [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:published_in ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 6 ; + sh:path biolink:summary ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 20 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 17 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 2 ; + sh:path biolink:volume ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 10 ; + sh:path dct:type ] ; + sh:targetClass biolink:JournalArticle . + +biolink:LogOddsAnalysisResult a sh:NodeShape ; + sh:closed true ; + sh:description "A result of a log odds ratio analysis." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:order 11 ; - sh:path biolink:timepoint ], + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 27 ; + sh:order 9 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 13 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 12 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; + sh:order 8 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ] ; - sh:targetClass biolink:MaterialSampleDerivationAssociation . + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ] ; + sh:targetClass biolink:LogOddsAnalysisResult . -biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; +biolink:MacromolecularComplex a sh:NodeShape ; sh:closed true ; - sh:description "An association between a material sample and a disease or phenotype." ; + sh:description "A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; + sh:order 7 ; sh:path biolink:id ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:MacromolecularComplex . + +biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:BiologicalProcess ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; - sh:targetClass biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . - -biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:description "An association between a material sample and something." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:MaterialSampleToEntityAssociationMixin . + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ] ; + sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . -biolink:MicroRNA a sh:NodeShape ; +biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:closed true ; + sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:path biolink:knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; + sh:order 30 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:path biolink:timepoint ], + [ sh:class biolink:CellularComponent ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:MicroRNA . - -biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:description "This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:ModelToDiseaseAssociationMixin . - -biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; - sh:path rdf:type ] ; - sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . - -biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ] ; + sh:targetClass biolink:MacromolecularMachineToCellularComponentAssociation . + +biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:description "an association which has a macromolecular machine mixin as a subject" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:MacromolecularMachineToEntityAssociationMixin . + +biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:closed true ; - sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; + sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -16103,248 +15888,281 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; - sh:path biolink:subject_namespace ] ; - sh:targetClass biolink:MolecularActivityToMolecularActivityAssociation . - -biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Association that holds the relationship between a reaction and the pathway it participates in." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:Pathway ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path dct:description ] ; + sh:targetClass biolink:MacromolecularMachineToMolecularActivityAssociation . + +biolink:Mammal a sh:NodeShape ; + sh:closed true ; + sh:description "A member of the class Mammalia, a clade of endothermic amniotes distinguished from reptiles and birds by the possession of hair, three middle ear bones, mammary glands, and a neocortex" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:negated ], + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; + sh:targetClass biolink:Mammal . + +biolink:MappingCollection a sh:NodeShape ; + sh:closed false ; + sh:description "A collection of deprecated mappings." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:PredicateMapping ; + sh:description "A collection of relationships that are not used in biolink, but have biolink patterns that can be used to replace them. This is a temporary slot to help with the transition to the fully qualified predicate model in Biolink3." ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:predicate_mappings ] ; + sh:targetClass biolink:MappingCollection . + +biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a material sample and the material entity from which it is derived." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:NamedThing ; + sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; @@ -16355,353 +16173,307 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "derivation relationship" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path biolink:negated ] ; + sh:targetClass biolink:MaterialSampleDerivationAssociation . + +biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a material sample and a disease or phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:MolecularActivityToPathwayAssociation . - -biolink:MolecularMixture a sh:NodeShape ; - sh:closed true ; - sh:description "A molecular mixture is a chemical mixture composed of two or more molecular entities with known concentration and stoichiometry." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:class biolink:ChemicalMixture ; - sh:description "" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:is_supplement ], + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ] ; - sh:targetClass biolink:MolecularMixture . - -biolink:MortalityOutcome a sh:NodeShape ; - sh:closed true ; - sh:description "An outcome of death from resulting from an exposure event." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:MortalityOutcome . - -biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . + +biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:description "An association between a material sample and something." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; - sh:targetClass biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:MaterialSampleToEntityAssociationMixin . -biolink:NoncodingRNAProduct a sh:NodeShape ; +biolink:MicroRNA a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:property [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; @@ -16710,517 +16482,360 @@ biolink:NoncodingRNAProduct a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:NoncodingRNAProduct . - -biolink:NucleicAcidSequenceMotif a sh:NodeShape ; - sh:closed true ; - sh:description "A linear nucleotide sequence pattern that is widespread and has, or is conjectured to have, a biological significance. e.g. the TATA box promoter motif, transcription factor binding consensus sequences." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 3 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:NucleicAcidSequenceMotif . - -biolink:NucleosomeModification a sh:NodeShape ; - sh:closed true ; - sh:description "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 13 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:MicroRNA . + +biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:description "This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "The entity that serves as the model of the disease. This may be an organism, a strain of organism, a genotype or variant that exhibits similar features, or a gene that when mutated exhibits features of the disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ] ; - sh:targetClass biolink:NucleosomeModification . + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:ModelToDiseaseAssociationMixin . -biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; +biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A result of a observed expected frequency analysis." ; + sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:creation_date ], + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 8 ; + sh:order 26 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:ObservedExpectedFrequencyAnalysisResult . - -biolink:Occurrent a sh:NodeShape ; - sh:closed false ; - sh:description "A processual entity." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:Occurrent . - -biolink:OrganismAttribute a sh:NodeShape ; - sh:closed true ; - sh:description "describes a characteristic of an organismal entity." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; + sh:order 30 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ] ; - sh:targetClass biolink:OrganismAttribute . - -biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; - sh:closed false ; - sh:description "An association between an organism taxon and another entity" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:OrganismTaxonToEntityAssociation . - -biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "predicate describing the relationship between the taxon and the environment" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ] ; + sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . + +biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "the environment in which the organism occurs" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; - sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . - -biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; - sh:closed false ; - sh:description "A relationship between two organism taxon nodes" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], @@ -17230,1090 +16845,2928 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ] ; + sh:targetClass biolink:MolecularActivityToMolecularActivityAssociation . + +biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Association that holds the relationship between a reaction and the pathway it participates in." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "organism taxon that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path rdf:predicate ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonAssociation . - -biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:path rdf:predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; + sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 21 ; + sh:order 20 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Pathway ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "the environment in which the two taxa interact" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:associated_environmental_context ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:path dct:description ] ; + sh:targetClass biolink:MolecularActivityToPathwayAssociation . + +biolink:MolecularMixture a sh:NodeShape ; + sh:closed true ; + sh:description "A molecular mixture is a chemical mixture composed of two or more molecular entities with known concentration and stoichiometry." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 34 ; + sh:order 20 ; sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:is_supplement ] ; + sh:targetClass biolink:MolecularMixture . -biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; +biolink:MortalityOutcome a sh:NodeShape ; sh:closed true ; - sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; + sh:description "An outcome of death from resulting from an exposure event." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:targetClass biolink:MortalityOutcome . + +biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:negated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 33 ; - sh:path biolink:deprecated ], + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; + sh:order 30 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 27 ; + sh:order 32 ; sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the more specific taxon" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 12 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; + sh:order 10 ; sh:path biolink:qualifiers ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the more general taxon" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; + sh:order 4 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 37 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; + sh:order 21 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . - -biolink:OrganismToOrganismAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:IndividualOrganism ; - sh:description "An association between two individual organisms." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:subject_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 5 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; + sh:order 11 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 7 ; + sh:path biolink:population_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 27 ; sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 6 ; + sh:path biolink:object_context_qualifier ] ; + sh:targetClass biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . + +biolink:NoncodingRNAProduct a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a point in time" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:IndividualOrganism ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 3 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; - sh:targetClass biolink:OrganismToOrganismAssociation . + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:NoncodingRNAProduct . -biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; +biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:closed true ; + sh:description "A linear nucleotide sequence pattern that is widespread and has, or is conjectured to have, a biological significance. e.g. the TATA box promoter motif, transcription factor binding consensus sequences." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 11 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:onset_qualifier ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "The relationship to the disease" ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 13 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:NucleicAcidSequenceMotif . + +biolink:NucleosomeModification a sh:NodeShape ; + sh:closed true ; + sh:description "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; + sh:order 10 ; sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:id ] ; + sh:targetClass biolink:NucleosomeModification . + +biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; + sh:closed true ; + sh:description "A result of a observed expected frequency analysis." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OrganismalEntity ; - sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ] ; + sh:targetClass biolink:ObservedExpectedFrequencyAnalysisResult . + +biolink:Occurrent a sh:NodeShape ; + sh:closed false ; + sh:description "A processual entity." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:Occurrent . + +biolink:Onset a sh:NodeShape ; + sh:closed true ; + sh:description "The age group in which (disease) symptom manifestations appear" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:Onset . + +biolink:OrganismAttribute a sh:NodeShape ; + sh:closed true ; + sh:description "describes a characteristic of an organismal entity." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:negated ], + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:severity_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ] ; - sh:targetClass biolink:OrganismalEntityAsAModelOfDiseaseAssociation . + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; + sh:targetClass biolink:OrganismAttribute . -biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; +biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; + sh:closed false ; + sh:description "An association between an organism taxon and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "interaction relationship type" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OrganismTaxon ; + sh:description "organism taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:OrganismTaxonToEntityAssociation . + +biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "the environment in which the organism occurs" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "predicate describing the relationship between the taxon and the environment" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; + sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . + +biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; + sh:closed false ; + sh:description "A relationship between two organism taxon nodes" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "organism taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonAssociation . + +biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "the environment in which the two taxa interact" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:associated_environmental_context ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . + +biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; + sh:closed true ; + sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the more general taxon" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the more specific taxon" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . + +biolink:OrganismToOrganismAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:IndividualOrganism ; + sh:description "An association between two individual organisms." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:IndividualOrganism ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ] ; + sh:targetClass biolink:OrganismToOrganismAssociation . + +biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OrganismalEntity ; + sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ] ; + sh:targetClass biolink:OrganismalEntityAsAModelOfDiseaseAssociation . + +biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "interaction relationship type" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:PairwiseGeneToGeneInteraction . + +biolink:PairwiseMolecularInteraction a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction at the molecular level between two physical entities" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:MolecularEntity ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "interaction relationship type" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:class biolink:MolecularEntity ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:interacting_molecules_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:PairwiseMolecularInteraction . + +biolink:Patent a sh:NodeShape ; + sh:closed true ; + sh:description "a legal document granted by a patent issuing authority which confers upon the patenter the sole right to make, use and sell an invention for a set period of time." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:rights ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:Patent . + +biolink:PathognomonicityQuantifier a sh:NodeShape ; + sh:closed false ; + sh:description "A relationship quantifier between a variant or symptom and a disease, which is high when the presence of the feature implies the existence of the disease" ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:PathognomonicityQuantifier . + +biolink:PathologicalAnatomicalExposure a sh:NodeShape ; + sh:closed true ; + sh:description "An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; + sh:targetClass biolink:PathologicalAnatomicalExposure . + +biolink:PathologicalAnatomicalOutcome a sh:NodeShape ; + sh:closed true ; + sh:description "An outcome resulting from an exposure event which is the manifestation of an abnormal anatomical structure." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:PathologicalAnatomicalOutcome . + +biolink:PathologicalAnatomicalStructure a sh:NodeShape ; + sh:closed true ; + sh:description "An anatomical structure with the potential of have an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:PathologicalAnatomicalStructure . + +biolink:PathologicalEntityMixin a sh:NodeShape ; + sh:closed false ; + sh:description "A pathological (abnormal) structure or process." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:PathologicalEntityMixin . + +biolink:PathologicalProcess a sh:NodeShape ; + sh:closed true ; + sh:description "A biologic function or a process having an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 16 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:PathologicalProcess . + +biolink:PathologicalProcessExposure a sh:NodeShape ; + sh:closed true ; + sh:description "A pathological process, when viewed as an exposure, representing a precondition, leading to or influencing an outcome, e.g. autoimmunity leading to disease." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 15 ; sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 13 ; + sh:path dct:description ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:iri ] ; + sh:targetClass biolink:PathologicalProcessExposure . + +biolink:PathologicalProcessOutcome a sh:NodeShape ; + sh:closed true ; + sh:description "An outcome resulting from an exposure event which is the manifestation of a pathological process." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:PathologicalProcessOutcome . + +biolink:Phenomenon a sh:NodeShape ; + sh:closed true ; + sh:description "a fact or situation that is observed to exist or happen, especially one whose cause or explanation is in question" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 9 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:PairwiseGeneToGeneInteraction . - -biolink:PairwiseMolecularInteraction a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction at the molecular level between two physical entities" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; + sh:order 10 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:class biolink:MolecularEntity ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:order 5 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:Phenomenon . + +biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -18321,1977 +19774,1857 @@ biolink:PairwiseMolecularInteraction a sh:NodeShape ; sh:order 16 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "interaction relationship type" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:MolecularEntity ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:interacting_molecules_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 32 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ] ; - sh:targetClass biolink:PairwiseMolecularInteraction . - -biolink:Patent a sh:NodeShape ; - sh:closed true ; - sh:description "a legal document granted by a patent issuing authority which confers upon the patenter the sole right to make, use and sell an invention for a set period of time." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; sh:order 8 ; - sh:path biolink:format ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:Patent . - -biolink:PathognomonicityQuantifier a sh:NodeShape ; - sh:closed false ; - sh:description "A relationship quantifier between a variant or symptom and a disease, which is high when the presence of the feature implies the existence of the disease" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:PathognomonicityQuantifier . - -biolink:PathologicalAnatomicalExposure a sh:NodeShape ; - sh:closed true ; - sh:description "An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path rdf:object ], [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 12 ; + sh:path biolink:timepoint ] ; + sh:targetClass biolink:PhenotypicFeatureToDiseaseAssociation . + +biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path biolink:has_total ], [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:path rdf:object ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:PathologicalAnatomicalExposure . - -biolink:PathologicalAnatomicalOutcome a sh:NodeShape ; - sh:closed true ; - sh:description "An outcome resulting from an exposure event which is the manifestation of an abnormal anatomical structure." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:PathologicalAnatomicalOutcome . - -biolink:PathologicalAnatomicalStructure a sh:NodeShape ; - sh:closed true ; - sh:description "An anatomical structure with the potential of have an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:order 12 ; + sh:path rdf:predicate ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 5 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:path rdf:subject ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 1 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:PathologicalAnatomicalStructure . - -biolink:PathologicalEntityMixin a sh:NodeShape ; - sh:closed false ; - sh:description "A pathological (abnormal) structure or process." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:PathologicalEntityMixin . + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:object_aspect_qualifier ] ; + sh:targetClass biolink:PhenotypicFeatureToEntityAssociationMixin . -biolink:PathologicalProcess a sh:NodeShape ; +biolink:PhenotypicQuality a sh:NodeShape ; sh:closed true ; - sh:description "A biologic function or a process having an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; + sh:description "A property of a phenotype" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 12 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:order 0 ; - sh:path biolink:id ], + sh:path rdfs:label ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:order 10 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:PathologicalProcess . + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:PhenotypicQuality . -biolink:PathologicalProcessExposure a sh:NodeShape ; +biolink:PhenotypicSex a sh:NodeShape ; sh:closed true ; - sh:description "A pathological process, when viewed as an exposure, representing a precondition, leading to or influencing an outcome, e.g. autoimmunity leading to disease." ; + sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ] ; - sh:targetClass biolink:PathologicalProcessExposure . - -biolink:PathologicalProcessOutcome a sh:NodeShape ; - sh:closed true ; - sh:description "An outcome resulting from an exposure event which is the manifestation of a pathological process." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:PathologicalProcessOutcome . - -biolink:Phenomenon a sh:NodeShape ; - sh:closed true ; - sh:description "a fact or situation that is observed to exist or happen, especially one whose cause or explanation is in question" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 14 ; sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; + sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; + sh:order 6 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:Phenomenon . + sh:path biolink:has_qualitative_value ] ; + sh:targetClass biolink:PhenotypicSex . -biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; +biolink:PhysicalEssence a sh:NodeShape ; + sh:closed false ; + sh:description "Semantic mixin concept. Pertains to entities that have physical properties such as mass, volume, or charge." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:PhysicalEssence . + +biolink:PhysicalEssenceOrOccurrent a sh:NodeShape ; + sh:closed false ; + sh:description "Either a physical or processual entity." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:PhysicalEssenceOrOccurrent . + +biolink:PhysiologicalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:severity_qualifier ], + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 5 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 13 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; + sh:order 0 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 28 ; + sh:order 10 ; sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 16 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:PhysiologicalProcess . + +biolink:PlanetaryEntity a sh:NodeShape ; + sh:closed true ; + sh:description "Any entity or process that exists at the level of the whole planet" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 32 ; + sh:order 9 ; sh:path dct:description ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; + sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ] ; - sh:targetClass biolink:PhenotypicFeatureToDiseaseAssociation . - -biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:double ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_count ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 8 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:PlanetaryEntity . + +biolink:Plant a sh:NodeShape ; + sh:closed true ; + sh:description "" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_total ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:severity_qualifier ] ; - sh:targetClass biolink:PhenotypicFeatureToEntityAssociationMixin . + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:Plant . -biolink:PhenotypicQuality a sh:NodeShape ; +biolink:Polypeptide a sh:NodeShape ; sh:closed true ; - sh:description "A property of a phenotype" ; + sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; + sh:order 2 ; sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; + sh:order 5 ; sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:Polypeptide . + +biolink:PopulationToPopulationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a two populations" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path rdf:object ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the subject of the association" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; + sh:order 30 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ] ; - sh:targetClass biolink:PhenotypicQuality . - -biolink:PhenotypicSex a sh:NodeShape ; - sh:closed true ; - sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 26 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:PhenotypicSex . - -biolink:PhysicalEssence a sh:NodeShape ; - sh:closed false ; - sh:description "Semantic mixin concept. Pertains to entities that have physical properties such as mass, volume, or charge." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:PhysicalEssence . - -biolink:PhysicalEssenceOrOccurrent a sh:NodeShape ; - sh:closed false ; - sh:description "Either a physical or processual entity." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:PhysicalEssenceOrOccurrent . + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ] ; + sh:targetClass biolink:PopulationToPopulationAssociation . -biolink:PhysiologicalProcess a sh:NodeShape ; +biolink:PosttranslationalModification a sh:NodeShape ; sh:closed true ; + sh:description "A chemical modification of a polypeptide or protein that occurs after translation. e.g. polypeptide cleavage to form separate proteins, methylation or acetylation of histone tail amino acids, protein ubiquitination." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 0 ; + sh:order 6 ; sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:enabled_by ], + sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 11 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 16 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:PhysiologicalProcess . + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ] ; + sh:targetClass biolink:PosttranslationalModification . -biolink:PlanetaryEntity a sh:NodeShape ; +biolink:PreprintPublication a sh:NodeShape ; sh:closed true ; - sh:description "Any entity or process that exists at the level of the whole planet" ; + sh:description "a document reresenting an early version of an author's original scholarly work, such as a research paper or a review, prior to formal peer review and publication in a peer-reviewed scholarly or scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 20 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; sh:order 3 ; - sh:path biolink:synonym ], + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 19 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; + sh:order 16 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 8 ; - sh:path rdfs:label ], + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:order 7 ; + sh:order 17 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 21 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:PlanetaryEntity . + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ] ; + sh:targetClass biolink:PreprintPublication . -biolink:Plant a sh:NodeShape ; +biolink:ProcessedMaterial a sh:NodeShape ; sh:closed true ; - sh:description "" ; + sh:description "A chemical entity (often a mixture) processed for consumption for nutritional, medical or technical use. Is a material entity that is created or changed during material processing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 18 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 15 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:path biolink:xref ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:Plant . - -biolink:Polypeptide a sh:NodeShape ; - sh:closed true ; - sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 17 ; sh:path rdfs:label ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 11 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 20 ; sh:path biolink:deprecated ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; + sh:order 9 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:path biolink:max_tolerated_dose ] ; + sh:targetClass biolink:ProcessedMaterial . + +biolink:Protein a sh:NodeShape ; + sh:closed true ; + sh:description "A gene product that is composed of a chain of amino acid sequences and is produced by ribosome-mediated translation of mRNA" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:Polypeptide . - -biolink:PopulationToPopulationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a two populations" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 5 ; + sh:path biolink:full_name ] ; + sh:targetClass biolink:Protein . + +biolink:ProteinDomain a sh:NodeShape ; + sh:closed true ; + sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 12 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; + sh:order 10 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 2 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a point in time" ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:path rdfs:label ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 14 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:ProteinDomain . + +biolink:ProteinFamily a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 27 ; + sh:order 8 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the object of the association" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ] ; - sh:targetClass biolink:PopulationToPopulationAssociation . + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:ProteinFamily . -biolink:PosttranslationalModification a sh:NodeShape ; +biolink:ProteinIsoform a sh:NodeShape ; sh:closed true ; - sh:description "A chemical modification of a polypeptide or protein that occurs after translation. e.g. polypeptide cleavage to form separate proteins, methylation or acetylation of histone tail amino acids, protein ubiquitination." ; + sh:description "Represents a protein that is a specific isoform of the canonical or reference protein. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114032/" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:PosttranslationalModification . + sh:order 3 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:ProteinIsoform . -biolink:PreprintPublication a sh:NodeShape ; +biolink:RNAProduct a sh:NodeShape ; sh:closed true ; - sh:description "a document reresenting an early version of an author's original scholarly work, such as a research paper or a review, prior to formal peer review and publication in a peer-reviewed scholarly or scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], + sh:path biolink:in_taxon ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 15 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; sh:order 3 ; - sh:path biolink:keywords ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 17 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:rights ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:PreprintPublication . - -biolink:ProcessedMaterial a sh:NodeShape ; - sh:closed true ; - sh:description "A chemical entity (often a mixture) processed for consumption for nutritional, medical or technical use. Is a material entity that is created or changed during material processing." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 13 ; + sh:order 6 ; sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 20 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:class biolink:ChemicalMixture ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:full_name ], + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 16 ; sh:path rdf:type ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ] ; - sh:targetClass biolink:ProcessedMaterial . + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:RNAProduct . -biolink:Protein a sh:NodeShape ; +biolink:RNAProductIsoform a sh:NodeShape ; sh:closed true ; - sh:description "A gene product that is composed of a chain of amino acid sequences and is produced by ribosome-mediated translation of mRNA" ; + sh:description "Represents a protein that is a specific isoform of the canonical or reference RNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; + sh:targetClass biolink:RNAProductIsoform . + +biolink:ReactionToCatalystAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 29 ; sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:reaction_side ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:stoichiometry ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:Protein . + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the chemical element that is the target of the statement" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ] ; + sh:targetClass biolink:ReactionToCatalystAssociation . -biolink:ProteinDomain a sh:NodeShape ; +biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; + sh:order 35 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 36 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:ProteinDomain . - -biolink:ProteinFamily a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 33 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:integer ; + sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], + sh:path biolink:stoichiometry ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 7 ; + sh:order 29 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:reaction_side ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:in_taxon ], + sh:path biolink:reaction_direction ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 30 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:ProteinFamily . - -biolink:ProteinIsoform a sh:NodeShape ; - sh:closed true ; - sh:description "Represents a protein that is a specific isoform of the canonical or reference protein. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114032/" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 34 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], + sh:order 6 ; + sh:path biolink:negated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:ProteinIsoform . + sh:order 25 ; + sh:path biolink:object_namespace ] ; + sh:targetClass biolink:ReactionToParticipantAssociation . -biolink:RNAProduct a sh:NodeShape ; +biolink:ReagentTargetedGene a sh:NodeShape ; sh:closed true ; + sh:description "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path rdfs:label ], @@ -20303,1349 +21636,1169 @@ biolink:RNAProduct a sh:NodeShape ; [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 11 ; sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 5 ; + sh:order 6 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 1 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:RNAProduct . - -biolink:RNAProductIsoform a sh:NodeShape ; - sh:closed true ; - sh:description "Represents a protein that is a specific isoform of the canonical or reference RNA" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 8 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:RNAProductIsoform . + sh:order 12 ; + sh:path dct:description ] ; + sh:targetClass biolink:ReagentTargetedGene . -biolink:ReactionToCatalystAssociation a sh:NodeShape ; +biolink:RegulatoryRegion a sh:NodeShape ; sh:closed true ; + sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:integer ; - sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:property [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:stoichiometry ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:has_biological_sequence ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 3 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; + sh:order 10 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; sh:order 8 ; - sh:path biolink:qualifiers ], + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; + sh:order 1 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the chemical element that is the target of the statement" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:RegulatoryRegion . + +biolink:RelationshipQuantifier a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:RelationshipQuantifier . + +biolink:RelationshipType a sh:NodeShape ; + sh:closed true ; + sh:description "An OWL property used as an edge label" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path biolink:id ] ; + sh:targetClass biolink:RelationshipType . + +biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; + sh:closed true ; + sh:description "A result of a relative frequency analysis." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:path biolink:rights ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ] ; - sh:targetClass biolink:ReactionToCatalystAssociation . - -biolink:ReactionToParticipantAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; + sh:order 8 ; sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 2 ; + sh:path biolink:format ] ; + sh:targetClass biolink:RelativeFrequencyAnalysisResult . + +biolink:SensitivityQuantifier a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:SensitivityQuantifier . + +biolink:SequenceAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a sequence feature and a nucleic acid entity it is localized to." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; + sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:stoichiometry ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; + sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 36 ; + sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ] ; - sh:targetClass biolink:ReactionToParticipantAssociation . - -biolink:ReagentTargetedGene a sh:NodeShape ; - sh:closed true ; - sh:description "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:path biolink:original_object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 31 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; + sh:order 26 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ] ; - sh:targetClass biolink:ReagentTargetedGene . - -biolink:RegulatoryRegion a sh:NodeShape ; - sh:closed true ; - sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:RegulatoryRegion . - -biolink:RelationshipQuantifier a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:RelationshipQuantifier . + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ] ; + sh:targetClass biolink:SequenceAssociation . -biolink:RelationshipType a sh:NodeShape ; +biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:closed true ; - sh:description "An OWL property used as an edge label" ; + sh:description "For example, a particular exon is part of a particular transcript or gene" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ] ; - sh:targetClass biolink:RelationshipType . - -biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; - sh:closed true ; - sh:description "A result of a relative frequency analysis." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 27 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:creation_date ], + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; sh:order 11 ; - sh:path rdf:type ], + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; - sh:targetClass biolink:RelativeFrequencyAnalysisResult . - -biolink:SensitivityQuantifier a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:SensitivityQuantifier . - -biolink:SequenceAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a sequence feature and a nucleic acid entity it is localized to." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:NamedThing ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NucleicAcidEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:EvidenceType ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:SequenceFeatureRelationship . + +biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; + sh:closed false ; + sh:description "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Treatment ; + sh:description "treatment whose efficacy is modulated by the subject variant" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:SequenceVariant ; + sh:description "variant that modulates the treatment of some disease" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:SequenceAssociation . + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ] ; + sh:targetClass biolink:SequenceVariantModulatesTreatmentAssociation . -biolink:SequenceFeatureRelationship a sh:NodeShape ; +biolink:Serial a sh:NodeShape ; sh:closed true ; - sh:description "For example, a particular exon is part of a particular transcript or gene" ; + sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 16 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:deprecated ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 7 ; + sh:path biolink:mesh_terms ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:summary ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 14 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 19 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 9 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; + sh:order 20 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 4 ; + sh:path biolink:pages ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 18 ; + sh:path biolink:iri ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 21 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:subject_category ], + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 11 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 12 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 17 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 10 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:order 2 ; + sh:path biolink:issue ], + [ sh:datatype xsd:string ; + sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 0 ; + sh:path biolink:iso_abbreviation ], + [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 1 ; + sh:path biolink:volume ] ; + sh:targetClass biolink:Serial . + +biolink:SeverityValue a sh:NodeShape ; + sh:closed true ; + sh:description "describes the severity of a phenotypic feature or disease" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:has_attribute_type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:has_quantitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; - sh:targetClass biolink:SequenceFeatureRelationship . + sh:order 0 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:SeverityValue . -biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; - sh:closed false ; - sh:description "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; +biolink:SiRNA a sh:NodeShape ; + sh:closed true ; + sh:description "A small RNA molecule that is the product of a longer exogenous or endogenous dsRNA, which is either a bimolecular duplex or very long hairpin, processed (via the Dicer pathway) such that numerous siRNAs accumulate from both strands of the dsRNA. SRNAs trigger the cleavage of their target molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 27 ; + sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:SiRNA . + +biolink:SmallMolecule a sh:NodeShape ; + sh:closed true ; + sh:description "A small molecule entity is a molecular entity characterized by availability in small-molecule databases of SMILES, InChI, IUPAC, or other unambiguous representation of its precise chemical structure; for convenience of representation, any valid chemical representation is included, even if it is not strictly molecular (e.g., sodium ion)." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 0 ; + sh:path biolink:is_metabolite ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; + sh:order 16 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 11 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:minCount 1 ; sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:order 4 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 17 ; + sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 14 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Treatment ; - sh:description "treatment whose efficacy is modulated by the subject variant" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path dct:description ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 1 ; + sh:path biolink:trade_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:SequenceVariant ; - sh:description "variant that modulates the treatment of some disease" ; - sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; - sh:targetClass biolink:SequenceVariantModulatesTreatmentAssociation . + sh:order 12 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:SmallMolecule . -biolink:Serial a sh:NodeShape ; +biolink:Snv a sh:NodeShape ; sh:closed true ; - sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; + sh:description "SNVs are single nucleotide positions in genomic DNA at which different sequence alternatives exist" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:issue ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 7 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 13 ; + sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 4 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:rights ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 7 ; - sh:path biolink:mesh_terms ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 16 ; + sh:order 2 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; sh:order 15 ; - sh:path biolink:synonym ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 20 ; + sh:order 4 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "The state of the sequence w.r.t a reference sequence" ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:volume ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; + sh:path biolink:has_biological_sequence ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:iso_abbreviation ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; - sh:order 19 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:Serial . + sh:order 3 ; + sh:path biolink:in_taxon ] ; + sh:targetClass biolink:Snv . -biolink:SiRNA a sh:NodeShape ; +biolink:SocioeconomicExposure a sh:NodeShape ; sh:closed true ; - sh:description "A small RNA molecule that is the product of a longer exogenous or endogenous dsRNA, which is either a bimolecular duplex or very long hairpin, processed (via the Dicer pathway) such that numerous siRNAs accumulate from both strands of the dsRNA. SRNAs trigger the cleavage of their target molecules." ; + sh:description "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:order 9 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 12 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -21653,484 +22806,528 @@ biolink:SiRNA a sh:NodeShape ; sh:order 6 ; sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; + sh:order 8 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 5 ; + sh:order 9 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ] ; - sh:targetClass biolink:SiRNA . - -biolink:SmallMolecule a sh:NodeShape ; - sh:closed true ; - sh:description "A small molecule entity is a molecular entity characterized by availability in small-molecule databases of SMILES, InChI, IUPAC, or other unambiguous representation of its precise chemical structure; for convenience of representation, any valid chemical representation is included, even if it is not strictly molecular (e.g., sodium ion)." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:SocioeconomicAttribute ; sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; sh:order 3 ; - sh:path biolink:max_tolerated_dose ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ], - [ sh:class biolink:ChemicalEntity ; - sh:description "" ; + sh:path biolink:has_quantitative_value ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:trade_name ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:SocioeconomicExposure . + +biolink:SocioeconomicOutcome a sh:NodeShape ; + sh:closed true ; + sh:description "An general social or economic outcome, such as healthcare costs, utilization, etc., resulting from an exposure event" ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:SocioeconomicOutcome . + +biolink:SpecificityQuantifier a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:SpecificityQuantifier . + +biolink:Study a sh:NodeShape ; + sh:closed true ; + sh:description "a detailed investigation and/or analysis" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; sh:order 2 ; - sh:path biolink:available_from ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 8 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_metabolite ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; sh:order 10 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; sh:order 7 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 12 ; + sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 17 ; + sh:order 11 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_toxic ] ; - sh:targetClass biolink:SmallMolecule . + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:Study . -biolink:Snv a sh:NodeShape ; +biolink:StudyPopulation a sh:NodeShape ; sh:closed true ; - sh:description "SNVs are single nucleotide positions in genomic DNA at which different sequence alternatives exist" ; + sh:description "A group of people banded together or treated as a group as participants in a research study." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 15 ; + sh:order 13 ; sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; + sh:order 2 ; sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; - sh:path biolink:xref ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 11 ; sh:path dct:description ] ; - sh:targetClass biolink:Snv . + sh:targetClass biolink:StudyPopulation . -biolink:SocioeconomicExposure a sh:NodeShape ; - sh:closed true ; - sh:description "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; +biolink:StudyResult a sh:NodeShape ; + sh:closed false ; + sh:description "A collection of data items from a study that are about a particular study subject or experimental unit (the 'focus' of the Result) - optionally with context/provenance metadata that may be relevant to the interpretation of this data as evidence." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:order 12 ; + sh:order 11 ; sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; + sh:order 4 ; sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:SocioeconomicAttribute ; - sh:description "connects any entity to an attribute" ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 8 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 11 ; + sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:SocioeconomicExposure . - -biolink:SocioeconomicOutcome a sh:NodeShape ; - sh:closed true ; - sh:description "An general social or economic outcome, such as healthcare costs, utilization, etc., resulting from an exposure event" ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:SocioeconomicOutcome . - -biolink:SpecificityQuantifier a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:SpecificityQuantifier . + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:StudyResult . -biolink:Study a sh:NodeShape ; +biolink:StudyVariable a sh:NodeShape ; sh:closed true ; - sh:description "a detailed investigation and/or analysis" ; + sh:description "a variable that is used as a measure in the investigation of a study" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 8 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:license ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:order 13 ; + sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; + sh:order 5 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:order 7 ; + sh:order 11 ; sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; - sh:targetClass biolink:Study . - -biolink:StudyPopulation a sh:NodeShape ; - sh:closed true ; - sh:description "A group of people banded together or treated as a group as participants in a research study." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:path biolink:rights ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; + sh:order 4 ; sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; + sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:StudyVariable . + +biolink:SubjectOfInvestigation a sh:NodeShape ; + sh:closed false ; + sh:description "An entity that has the role of being studied in an investigation, study, or experiment" ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:SubjectOfInvestigation . + +biolink:TaxonToTaxonAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; - sh:targetClass biolink:StudyPopulation . - -biolink:StudyResult a sh:NodeShape ; - sh:closed false ; - sh:description "A collection of data items from a study that are about a particular study subject or experimental unit (the 'focus' of the Result) - optionally with context/provenance metadata that may be relevant to the interpretation of this data as evidence." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:iri ], + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; - sh:path rdfs:label ], + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:order 11 ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OrganismTaxon ; + sh:description "An association between individuals of different taxa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ] ; + sh:targetClass biolink:TaxonToTaxonAssociation . + +biolink:TextMiningResult a sh:NodeShape ; + sh:closed true ; + sh:description "A result of text mining." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], @@ -22139,1840 +23336,1973 @@ biolink:StudyResult a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:StudyResult . - -biolink:StudyVariable a sh:NodeShape ; - sh:closed true ; - sh:description "a variable that is used as a measure in the investigation of a study" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ] ; - sh:targetClass biolink:StudyVariable . + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:TextMiningResult . -biolink:SubjectOfInvestigation a sh:NodeShape ; +biolink:ThingWithTaxon a sh:NodeShape ; sh:closed false ; - sh:description "An entity that has the role of being studied in an investigation, study, or experiment" ; + sh:description "A mixin that can be used on any entity that can be taxonomically classified. This includes individual organisms; genes, their products and other molecular entities; body parts; biological processes" ; sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:SubjectOfInvestigation . + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; + sh:targetClass biolink:ThingWithTaxon . -biolink:TaxonToTaxonAssociation a sh:NodeShape ; +biolink:TranscriptToGeneRelationship a sh:NodeShape ; sh:closed true ; + sh:description "A gene is a collection of transcripts" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OrganismTaxon ; - sh:description "An association between individuals of different taxa." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Transcript ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; - sh:targetClass biolink:TaxonToTaxonAssociation . - -biolink:TaxonomicRank a sh:NodeShape ; - sh:closed true ; - sh:description "A descriptor for the rank within a taxonomic classification. Example instance: TAXRANK:0000017 (kingdom)" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ] ; - sh:targetClass biolink:TaxonomicRank . + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:TranscriptToGeneRelationship . -biolink:TextMiningResult a sh:NodeShape ; +biolink:TranscriptionFactorBindingSite a sh:NodeShape ; sh:closed true ; - sh:description "A result of text mining." ; + sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:format ], + sh:path biolink:in_taxon ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 8 ; + sh:order 1 ; sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; + sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; - sh:targetClass biolink:TextMiningResult . - -biolink:ThingWithTaxon a sh:NodeShape ; - sh:closed false ; - sh:description "A mixin that can be used on any entity that can be taxonomically classified. This includes individual organisms; genes, their products and other molecular entities; body parts; biological processes" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:ThingWithTaxon . + sh:order 3 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ] ; + sh:targetClass biolink:TranscriptionFactorBindingSite . -biolink:TranscriptToGeneRelationship a sh:NodeShape ; +biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; - sh:description "A gene is a collection of transcripts" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:SequenceVariant ; + sh:description "A variant that has a role in modeling the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_namespace ] ; + sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . + +biolink:VariantToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ] ; - sh:targetClass biolink:TranscriptToGeneRelationship . - -biolink:TranscriptionFactorBindingSite a sh:NodeShape ; - sh:closed true ; - sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:order 10 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:TranscriptionFactorBindingSite . - -biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; sh:order 34 ; - sh:path biolink:severity_qualifier ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "The relationship to the disease" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:frequency_qualifier ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Disease ; + sh:description "a disease that is associated with that variant" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:VariantToDiseaseAssociation . + +biolink:VariantToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:VariantToEntityAssociationMixin . + +biolink:VariantToGeneAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:SequenceVariant ; - sh:description "A variant that has a role in modeling the disease." ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:onset_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; - sh:path biolink:id ] ; - sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . - -biolink:VariantToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:subject_category ] ; + sh:targetClass biolink:VariantToGeneAssociation . + +biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:phenotypic_state ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path rdf:predicate ], [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 15 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "E.g. is pathogenic for" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 1 ; + sh:path biolink:expression_site ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 16 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 18 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Disease ; - sh:description "a disease that is associated with that variant" ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; + sh:order 9 ; sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; + sh:order 26 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:order 35 ; - sh:path biolink:onset_qualifier ], + sh:path dct:description ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Optional quantitative value indicating degree of expression." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 3 ; + sh:order 7 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; - sh:targetClass biolink:VariantToDiseaseAssociation . - -biolink:VariantToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:VariantToEntityAssociationMixin . + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:VariantToGeneExpressionAssociation . -biolink:VariantToGeneAssociation a sh:NodeShape ; +biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; - sh:description "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:path biolink:knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; + sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 27 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; + sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 36 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 23 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:path biolink:publications ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 15 ; sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 31 ; sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; + sh:order 30 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ] ; - sh:targetClass biolink:VariantToGeneAssociation . - -biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ] ; + sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . + +biolink:VariantToPopulationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; + sh:order 15 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; + [ sh:class biolink:SequenceVariant ; + sh:description "an allele that has a certain frequency in a given population" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:quantifier_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 29 ; + sh:order 30 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that is observed to have the frequency" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; + sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 35 ; - sh:path dct:description ], + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:object_category ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:has_percentage ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:integer ; + sh:description "number all populations that carry a particular allele, aka allele number" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 30 ; + sh:order 31 ; sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:double ; + sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ] ; - sh:targetClass biolink:VariantToGeneExpressionAssociation . - -biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 5 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "number in object population that carry a particular allele, aka allele count" ; sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 28 ; - sh:path biolink:iri ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:order 9 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; + sh:order 21 ; sh:path biolink:object_category ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 8 ; sh:path biolink:negated ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 11 ; + sh:path biolink:publications ] ; + sh:targetClass biolink:VariantToPopulationAssociation . + +biolink:Vertebrate a sh:NodeShape ; + sh:closed true ; + sh:description "A sub-phylum of animals consisting of those having a bony or cartilaginous vertebral column." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:SeverityValue ; - sh:description "a qualifier used in a phenotypic association to state how severe the phenotype is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:severity_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:onset_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 34 ; + sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 32 ; + sh:order 11 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:Vertebrate . + +biolink:Virus a sh:NodeShape ; + sh:closed true ; + sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . - -biolink:VariantToPopulationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:has_percentage ], + sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 32 ; + sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:Virus . + +biolink:WebPage a sh:NodeShape ; + sh:closed true ; + sh:description "a document that is published according to World Wide Web standards, which may incorporate text, graphics, sound, and/or other features." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:class biolink:SequenceVariant ; - sh:description "an allele that has a certain frequency in a given population" ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that is observed to have the frequency" ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; sh:order 7 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:path biolink:license ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 36 ; + sh:order 19 ; sh:path dct:description ], - [ sh:datatype xsd:integer ; - sh:description "number in object population that carry a particular allele, aka allele count" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:iri ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ] ; + sh:targetClass biolink:WebPage . + +biolink:Behavior a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "number all populations that carry a particular allele, aka allele number" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_total ], + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 38 ; + sh:order 16 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:double ; - sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 5 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:VariantToPopulationAssociation . + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ] ; + sh:targetClass biolink:Behavior . -biolink:Vertebrate a sh:NodeShape ; +biolink:BehavioralFeature a sh:NodeShape ; sh:closed true ; - sh:description "A sub-phylum of animals consisting of those having a bony or cartilaginous vertebral column." ; + sh:description "A phenotypic feature which is behavioral in nature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:BehavioralFeature . + +biolink:BiologicalProcess a sh:NodeShape ; + sh:closed true ; + sh:description "One or more causally connected executions of molecular functions" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 16 ; sh:path biolink:deprecated ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 14 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:Vertebrate . - -biolink:Virus a sh:NodeShape ; - sh:closed true ; - sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:path rdfs:label ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:path biolink:full_name ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:xref ], + sh:path biolink:enabled_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 0 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; + sh:targetClass biolink:BiologicalProcess . + +biolink:CellularComponent a sh:NodeShape ; + sh:closed true ; + sh:description "A location in or around a cell" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; @@ -23981,6 +25311,23 @@ biolink:Virus a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -23990,433 +25337,321 @@ biolink:Virus a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:Virus . + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:CellularComponent . -biolink:WebPage a sh:NodeShape ; +biolink:ClinicalAttribute a sh:NodeShape ; sh:closed true ; - sh:description "a document that is published according to World Wide Web standards, which may incorporate text, graphics, sound, and/or other features." ; + sh:description "Attributes relating to a clinical manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 4 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 20 ; + sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 16 ; + sh:order 11 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:WebPage . - -biolink:Behavior a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 0 ; + sh:order 5 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ] ; + sh:targetClass biolink:ClinicalAttribute . + +biolink:Dataset a sh:NodeShape ; + sh:closed true ; + sh:description "an item that refers to a collection of data from a data source." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 11 ; + sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 9 ; sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:Behavior . - -biolink:BehavioralFeature a sh:NodeShape ; - sh:closed true ; - sh:description "A phenotypic feature which is behavioral in nature." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path dct:description ] ; + sh:targetClass biolink:Dataset . + +biolink:DatasetDistribution a sh:NodeShape ; + sh:closed true ; + sh:description "an item that holds distribution level information about a dataset." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; + sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:in_taxon ], + sh:path biolink:distribution_download_url ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; + sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:BehavioralFeature . - -biolink:BiologicalProcess a sh:NodeShape ; - sh:closed true ; - sh:description "One or more causally connected executions of molecular functions" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 0 ; + sh:order 9 ; sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 3 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 2 ; + sh:path biolink:rights ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:BiologicalProcess . + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:license ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:DatasetDistribution . -biolink:Case a sh:NodeShape ; +biolink:Device a sh:NodeShape ; sh:closed true ; - sh:description "An individual (human) organism that has a patient role in some clinical context." ; + sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 9 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; - sh:path biolink:synonym ], + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:Case . - -biolink:CellLine a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:iri ], + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 10 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 4 ; + sh:path biolink:id ] ; + sh:targetClass biolink:Device . + +biolink:Exon a sh:NodeShape ; + sh:closed true ; + sh:description "A region of the transcript sequence within a gene which is not removed from the primary RNA transcript by RNA splicing." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; @@ -24426,643 +25661,627 @@ biolink:CellLine a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:CellLine . + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:Exon . -biolink:CellularComponent a sh:NodeShape ; +biolink:GeneFamily a sh:NodeShape ; sh:closed true ; - sh:description "A location in or around a cell" ; + sh:description "any grouping of multiple genes or gene products related by common descent" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; + sh:property [ sh:datatype xsd:string ; + sh:order 10 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 12 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 9 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 11 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path rdfs:label ] ; + sh:targetClass biolink:GeneFamily . + +biolink:GeneProductMixin a sh:NodeShape ; + sh:closed false ; + sh:description "The functional molecular product of a single gene locus. Gene products are either proteins or functional RNA molecules." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:CellularComponent . + sh:order 2 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:GeneProductMixin . -biolink:ClinicalAttribute a sh:NodeShape ; +biolink:GeneticInheritance a sh:NodeShape ; sh:closed true ; - sh:description "Attributes relating to a clinical manifestation" ; + sh:description "The pattern or 'mode' in which a particular genetic trait or disorder is passed from one generation to the next, e.g. autosomal dominant, autosomal recessive, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; - sh:path biolink:provided_by ], + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; - sh:targetClass biolink:ClinicalAttribute . - -biolink:Dataset a sh:NodeShape ; - sh:closed true ; - sh:description "an item that refers to a collection of data from a data source." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:rights ], + sh:path rdfs:label ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 7 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:order 11 ; + sh:order 9 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:GeneticInheritance . + +biolink:InformationContentEntity a sh:NodeShape ; + sh:closed false ; + sh:description "a piece of information that typically describes some topic of discourse or is used as support." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:Dataset . - -biolink:DatasetDistribution a sh:NodeShape ; - sh:closed true ; - sh:description "an item that holds distribution level information about a dataset." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:distribution_download_url ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:rights ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; sh:path biolink:license ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 13 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 11 ; + sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:format ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:DatasetDistribution . - -biolink:Device a sh:NodeShape ; - sh:closed true ; - sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; + sh:order 9 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:Device . + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:InformationContentEntity . -biolink:Exon a sh:NodeShape ; - sh:closed true ; - sh:description "A region of the transcript sequence within a gene which is not removed from the primary RNA transcript by RNA splicing." ; +biolink:OrganismalEntity a sh:NodeShape ; + sh:closed false ; + sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:Exon . + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:OrganismalEntity . -biolink:GeneFamily a sh:NodeShape ; +biolink:PredicateMapping a sh:NodeShape ; sh:closed true ; - sh:description "any grouping of multiple genes or gene products related by common descent" ; + sh:description "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 7 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:order 14 ; + sh:path biolink:object_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:path biolink:object_part_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:exact_match ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; sh:order 10 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 20 ; + sh:path biolink:broad_match ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 11 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:narrow_match ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:GeneFamily . - -biolink:GeneProductMixin a sh:NodeShape ; - sh:closed false ; - sh:description "The functional molecular product of a single gene locus. Gene products are either proteins or functional RNA molecules." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:GeneProductMixin . - -biolink:GeneticInheritance a sh:NodeShape ; - sh:closed true ; - sh:description "The pattern or 'mode' in which a particular genetic trait or disorder is passed from one generation to the next, e.g. autosomal dominant, autosomal recessive, etc." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:path biolink:mapped_predicate ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:object_derivative_qualifier ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:subject_context_qualifier ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:datatype xsd:string ; + sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; sh:order 4 ; + sh:path biolink:subject_part_qualifier ] ; + sh:targetClass biolink:PredicateMapping . + +biolink:Procedure a sh:NodeShape ; + sh:closed true ; + sh:description "A series of actions conducted in a certain order or manner" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ], + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 5 ; sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; - sh:targetClass biolink:GeneticInheritance . - -biolink:InformationContentEntity a sh:NodeShape ; - sh:closed false ; - sh:description "a piece of information that typically describes some topic of discourse or is used as support." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:id ] ; + sh:targetClass biolink:Procedure . + +biolink:SocioeconomicAttribute a sh:NodeShape ; + sh:closed true ; + sh:description "Attributes relating to a socioeconomic manifestation" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 0 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 12 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path biolink:format ], + sh:path biolink:has_quantitative_value ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:order 5 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:rights ], + sh:path biolink:has_attribute_type ] ; + sh:targetClass biolink:SocioeconomicAttribute . + +biolink:TaxonomicRank a sh:NodeShape ; + sh:closed true ; + sh:description "A descriptor for the rank within a taxonomic classification. Example instance: TAXRANK:0000017 (kingdom)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ] ; + sh:targetClass biolink:TaxonomicRank . + +biolink:Treatment a sh:NodeShape ; + sh:closed true ; + sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Device ; + sh:description "connects an entity to one or more (medical) devices" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_device ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Drug ; + sh:description "connects an entity to one or more drugs" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_drug ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; @@ -25071,6 +26290,19 @@ biolink:InformationContentEntity a sh:NodeShape ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], + [ sh:class biolink:Procedure ; + sh:description "connects an entity to one or more (medical) procedures" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_procedure ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -25079,560 +26311,448 @@ biolink:InformationContentEntity a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; - sh:targetClass biolink:InformationContentEntity . + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:Treatment . -biolink:OrganismalEntity a sh:NodeShape ; - sh:closed false ; - sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; +biolink:Zygosity a sh:NodeShape ; + sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 14 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 5 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:order 9 ; + sh:order 11 ; sh:path rdf:type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:OrganismalEntity . - -biolink:Outcome a sh:NodeShape ; - sh:closed false ; - sh:description "An entity that has the role of being the consequence of an exposure event. This is an abstract mixin grouping of various categories of possible biological or non-biological (e.g. clinical) outcomes." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:Outcome . - -biolink:PredicateMapping a sh:NodeShape ; - sh:closed true ; - sh:description "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:object_context_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:object_derivative_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualified_predicate ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:causal_mechanism_qualifier ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:object_part_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:species_context_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:broad_match ], + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:NamedThing ; - sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:exact_match ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_part_qualifier ], - [ sh:datatype xsd:string ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_context_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:narrow_match ], - [ sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:mapped_predicate ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; - sh:path biolink:object_aspect_qualifier ] ; - sh:targetClass biolink:PredicateMapping . + sh:path biolink:synonym ] ; + sh:targetClass biolink:Zygosity . -biolink:Procedure a sh:NodeShape ; +biolink:Case a sh:NodeShape ; sh:closed true ; - sh:description "A series of actions conducted in a certain order or manner" ; + sh:description "An individual (human) organism that has a patient role in some clinical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; + sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; sh:order 9 ; - sh:path dct:description ] ; - sh:targetClass biolink:Procedure . + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:Case . -biolink:SocioeconomicAttribute a sh:NodeShape ; +biolink:CellLine a sh:NodeShape ; sh:closed true ; - sh:description "Attributes relating to a socioeconomic manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; + sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:SocioeconomicAttribute . + sh:path biolink:full_name ] ; + sh:targetClass biolink:CellLine . -biolink:Treatment a sh:NodeShape ; +biolink:IndividualOrganism a sh:NodeShape ; sh:closed true ; - sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; + sh:description "An instance of an organism. For example, Richard Nixon, Charles Darwin, my pet cat. Example ID: ORCID:0000-0002-5355-2576" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Procedure ; - sh:description "connects an entity to one or more (medical) procedures" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_procedure ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:order 6 ; - sh:path biolink:full_name ], - [ sh:class biolink:Drug ; - sh:description "connects an entity to one or more drugs" ; + sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path biolink:has_drug ], + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 7 ; sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; sh:order 11 ; - sh:path rdf:type ], + sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; + sh:order 5 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Device ; - sh:description "connects an entity to one or more (medical) devices" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_device ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a point in time" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:timepoint ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ] ; - sh:targetClass biolink:Treatment . + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:IndividualOrganism . -biolink:Zygosity a sh:NodeShape ; +biolink:Outcome a sh:NodeShape ; + sh:closed false ; + sh:description "An entity that has the role of being the consequence of an exposure event. This is an abstract mixin grouping of various categories of possible biological or non-biological (e.g. clinical) outcomes." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:Outcome . + +biolink:Transcript a sh:NodeShape ; sh:closed true ; + sh:description "An RNA synthesized on a DNA or RNA template by an RNA polymerase." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; + sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 11 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; - sh:targetClass biolink:Zygosity . - -biolink:Drug a sh:NodeShape ; - sh:closed true ; - sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; + sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 17 ; + sh:order 1 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 15 ; + sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:Transcript . + +biolink:Drug a sh:NodeShape ; + sh:closed true ; + sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 10 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 11 ; - sh:path biolink:xref ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 13 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], + sh:order 18 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_chemical_role ], - [ sh:class biolink:ChemicalMixture ; - sh:description "" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:is_supplement ], + sh:order 14 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 4 ; sh:path biolink:routes_of_delivery ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path biolink:is_toxic ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:ChemicalMixture ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:is_supplement ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 11 ; + sh:path biolink:xref ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:trade_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:is_toxic ] ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Drug . biolink:ExposureEvent a sh:NodeShape ; @@ -25651,79 +26771,14 @@ biolink:ExposureEvent a sh:NodeShape ; sh:path biolink:id ] ; sh:targetClass biolink:ExposureEvent . -biolink:IndividualOrganism a sh:NodeShape ; - sh:closed true ; - sh:description "An instance of an organism. For example, Richard Nixon, Charles Darwin, my pet cat. Example ID: ORCID:0000-0002-5355-2576" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:IndividualOrganism . - biolink:MaterialSample a sh:NodeShape ; sh:closed true ; sh:description "A sample is a limited quantity of something (e.g. an individual or set of individuals from a population, or a portion of a substance) to be used for testing, analysis, inspection, investigation, demonstration, or trial use. [SIO]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], @@ -25732,127 +26787,72 @@ biolink:MaterialSample a sh:NodeShape ; sh:order 6 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:MaterialSample . - -biolink:Transcript a sh:NodeShape ; - sh:closed true ; - sh:description "An RNA synthesized on a DNA or RNA template by an RNA polymerase." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 4 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 5 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; - sh:targetClass biolink:Transcript . + sh:order 11 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:MaterialSample . biolink:Pathway a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; @@ -25862,145 +26862,155 @@ biolink:Pathway a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ] ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:Pathway . biolink:LifeStage a sh:NodeShape ; sh:closed true ; sh:description "A stage of development or growth of an organism, including post-natal adult stages" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:LifeStage . biolink:NucleicAcidEntity a sh:NodeShape ; sh:closed true ; sh:description "A nucleic acid entity is a molecular entity characterized by availability in gene databases of nucleotide-based sequence representations of its precise sequence; for convenience of representation, partial sequences of various kinds are included." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalRole ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:is_metabolite ], + [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_chemical_role ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 11 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; @@ -26011,325 +27021,299 @@ biolink:NucleicAcidEntity a sh:NodeShape ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_metabolite ], + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 11 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path biolink:is_toxic ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:is_toxic ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:max_tolerated_dose ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ] ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:NucleicAcidEntity . -biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; +biolink:MolecularActivity a sh:NodeShape ; sh:closed true ; - sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; + sh:description "An execution of a molecular function carried out by a gene product or macromolecular complex." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 14 ; sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 0 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "The gene product, gene, or complex that catalyzes the reaction" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:PopulationOfIndividualOrganisms . - -biolink:ChemicalEntityOrGeneOrGeneProduct a sh:NodeShape ; - sh:closed false ; - sh:description "A union of chemical entities and children, and gene or gene product. This mixin is helpful to use when searching across chemical entities that must include genes and their children as chemical entities." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProduct . - -biolink:MolecularActivity a sh:NodeShape ; - sh:closed true ; - sh:description "An execution of a molecular function carried out by a gene product or macromolecular complex." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:MolecularEntity ; sh:description "A chemical entity that is the input for the reaction" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "The gene product, gene, or complex that catalyzes the reaction" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:MolecularEntity ; + sh:description "A chemical entity that is the output for the reaction" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path biolink:has_output ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:MolecularActivity . + +biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; + sh:closed true ; + sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 4 ; + sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 0 ; + sh:order 6 ; sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:MolecularEntity ; - sh:description "A chemical entity that is the output for the reaction" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; - sh:path biolink:synonym ], + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:MolecularActivity . + sh:path biolink:deprecated ] ; + sh:targetClass biolink:PopulationOfIndividualOrganisms . biolink:ChemicalMixture a sh:NodeShape ; sh:closed true ; sh:description "A chemical mixture is a chemical entity composed of two or more molecular entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntity ; - sh:description "" ; + sh:property [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:boolean ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:ChemicalMixture ; sh:description "" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 10 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], - [ sh:class biolink:ChemicalMixture ; - sh:description "" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:order 15 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ] ; + sh:order 7 ; + sh:path biolink:is_toxic ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ] ; sh:targetClass biolink:ChemicalMixture . biolink:MacromolecularMachineMixin a sh:NodeShape ; @@ -26346,7 +27330,28 @@ biolink:MolecularEntity a sh:NodeShape ; sh:closed true ; sh:description "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntity ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:ChemicalEntity ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; @@ -26356,108 +27361,77 @@ biolink:MolecularEntity a sh:NodeShape ; sh:maxCount 1 ; sh:order 14 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], + sh:order 0 ; + sh:path biolink:is_metabolite ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 13 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 15 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 11 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:is_toxic ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], + sh:order 17 ; + sh:path biolink:deprecated ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 2 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_metabolite ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_toxic ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ] ; + sh:path biolink:available_from ] ; sh:targetClass biolink:MolecularEntity . biolink:PhysicalEntity a sh:NodeShape ; sh:closed true ; sh:description "An entity that has material reality (a.k.a. physical essence)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; @@ -26471,61 +27445,89 @@ biolink:PhysicalEntity a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ] ; sh:targetClass biolink:PhysicalEntity . +biolink:ChemicalEntityOrGeneOrGeneProduct a sh:NodeShape ; + sh:closed false ; + sh:description "A union of chemical entities and children, and gene or gene product. This mixin is helpful to use when searching across chemical entities that must include genes and their children as chemical entities." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProduct . + biolink:Genotype a sh:NodeShape ; sh:closed true ; sh:description "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:class biolink:Zygosity ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_zygosity ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:class biolink:Zygosity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_zygosity ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 4 ; @@ -26533,24 +27535,12 @@ biolink:Genotype a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -26562,75 +27552,76 @@ biolink:PhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "A combination of entity and quality that makes up a phenotyping statement. An observable characteristic of an individual resulting from the interaction of its genotype with its molecular and physical environment." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:PhenotypicFeature . biolink:SequenceVariant a sh:NodeShape ; sh:closed true ; sh:description "A sequence_variant is a non exact copy of a sequence_feature or genome exhibiting one or more sequence_alteration." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Gene ; sh:description "Each allele can be associated with any number of genes" ; sh:nodeKind sh:IRI ; @@ -26642,59 +27633,58 @@ biolink:SequenceVariant a sh:NodeShape ; sh:minCount 1 ; sh:order 2 ; sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 4 ; sh:path rdfs:label ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:description "The state of the sequence w.r.t a reference sequence" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:order 13 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ] ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ] ; sh:targetClass biolink:SequenceVariant . biolink:Agent a sh:NodeShape ; @@ -26702,102 +27692,78 @@ biolink:Agent a sh:NodeShape ; sh:description "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:address ], + [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; + sh:order 0 ; + sh:path biolink:affiliation ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; - sh:order 0 ; - sh:path biolink:affiliation ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "it is recommended that an author's 'name' property be formatted as \"surname, firstname initial.\"" ; sh:maxCount 1 ; sh:order 10 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Agent . biolink:ChemicalRole a sh:NodeShape ; sh:closed true ; sh:description "A role played by the molecular entity or part thereof within a chemical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -26805,109 +27771,85 @@ biolink:ChemicalRole a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; - sh:targetClass biolink:ChemicalRole . - -biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; - sh:closed true ; - sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; + sh:order 5 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ] ; + sh:targetClass biolink:ChemicalRole . + +biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; + sh:closed true ; + sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeature . - -biolink:Disease a sh:NodeShape ; - sh:closed true ; - sh:description "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; @@ -26917,155 +27859,136 @@ biolink:Disease a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:Disease . + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeature . biolink:Gene a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path rdfs:label ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:order 5 ; + sh:path rdfs:label ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:has_biological_sequence ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Symbol for a particular thing" ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:symbol ] ; + sh:path biolink:symbol ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Gene . biolink:BiologicalSex a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -27073,12 +27996,9 @@ biolink:BiologicalSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -27090,90 +28010,160 @@ biolink:BiologicalSex a sh:NodeShape ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ] ; sh:targetClass biolink:BiologicalSex . -biolink:AnatomicalEntity a sh:NodeShape ; +biolink:Disease a sh:NodeShape ; sh:closed true ; - sh:description "A subcellular location, cell type or gross anatomical part" ; + sh:description "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:Disease . + +biolink:AnatomicalEntity a sh:NodeShape ; + sh:closed true ; + sh:description "A subcellular location, cell type or gross anatomical part" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; sh:path rdfs:label ] ; sh:targetClass biolink:AnatomicalEntity . @@ -27181,30 +28171,15 @@ biolink:ChemicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntity ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; @@ -27214,207 +28189,74 @@ biolink:ChemicalEntity a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:ChemicalEntity . - -biolink:GeneOrGeneProduct a sh:NodeShape ; - sh:closed false ; - sh:description "A union of gene loci or gene products. Frequently an identifier for one will be used as proxy for another" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:GeneOrGeneProduct . - -biolink:Onset a sh:NodeShape ; - sh:closed true ; - sh:description "The age group in which (disease) symptom manifestations appear" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; + sh:order 5 ; sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; + sh:order 6 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:path biolink:has_chemical_role ], + [ sh:class biolink:ChemicalEntity ; + sh:description "" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 0 ; + sh:path biolink:trade_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ] ; - sh:targetClass biolink:Onset . - -biolink:SeverityValue a sh:NodeShape ; - sh:closed true ; - sh:description "describes the severity of a phenotypic feature or disease" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:order 11 ; + sh:order 12 ; sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 7 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; + sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:order 16 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:ChemicalEntity . + +biolink:GeneOrGeneProduct a sh:NodeShape ; + sh:closed false ; + sh:description "A union of gene loci or gene products. Frequently an identifier for one will be used as proxy for another" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; - sh:targetClass biolink:SeverityValue . + sh:order 0 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:GeneOrGeneProduct . biolink:QuantityValue a sh:NodeShape ; sh:closed true ; @@ -27431,293 +28273,319 @@ biolink:QuantityValue a sh:NodeShape ; sh:path biolink:has_unit ] ; sh:targetClass biolink:QuantityValue . -biolink:NamedThing a sh:NodeShape ; - sh:closed true ; - sh:description "a databased entity or concept/class" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; +biolink:OrganismTaxon a sh:NodeShape ; + sh:closed true ; + sh:description "A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 4 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 11 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 1 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; + sh:order 12 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:TaxonomicRank ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_taxonomic_rank ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 9 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ] ; - sh:targetClass biolink:NamedThing . - -biolink:OrganismTaxon a sh:NodeShape ; - sh:closed true ; - sh:description "A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; + sh:order 10 ; sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; + sh:order 3 ; sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 2 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 8 ; + sh:path rdf:type ] ; sh:targetClass biolink:OrganismTaxon . biolink:EvidenceType a sh:NodeShape ; sh:closed true ; sh:description "Class of evidence that supports an association" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:EvidenceType . + +biolink:NamedThing a sh:NodeShape ; + sh:closed true ; + sh:description "a databased entity or concept/class" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; + sh:order 3 ; sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; + sh:order 0 ; sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:order 10 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; - sh:targetClass biolink:EvidenceType . + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ] ; + sh:targetClass biolink:NamedThing . biolink:Publication a sh:NodeShape ; sh:closed true ; sh:description "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:creation_date ], + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 13 ; - sh:path biolink:id ], + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:license ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 15 ; + sh:order 16 ; sh:path biolink:category ; sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:format ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 18 ; + sh:order 19 ; sh:path dct:description ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; sh:order 17 ; - sh:path rdfs:label ], + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; + sh:order 11 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:rights ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; + sh:order 20 ; sh:path biolink:has_attribute ], [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:license ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; + sh:path biolink:mesh_terms ] ; sh:targetClass biolink:Publication . biolink:RetrievalSource a sh:NodeShape ; sh:closed true ; sh:description "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:license ], + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:resource_role ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:category ; + sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], + [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:upstream_resource_ids ], + [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:resource_id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -27727,71 +28595,55 @@ biolink:RetrievalSource a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 8 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:creation_date ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:category ; - sh:pattern "^biolink:[A-Z][A-Za-z]+$" ], - [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:order 16 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:resource_id ], + sh:order 4 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:rights ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 6 ; + sh:path biolink:format ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:has_attribute ], - [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:resource_role ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:format ], - [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:upstream_resource_ids ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + sh:order 15 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; @@ -27802,47 +28654,30 @@ biolink:Attribute a sh:NodeShape ; sh:closed true ; sh:description "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; @@ -27852,6 +28687,16 @@ biolink:Attribute a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -27859,17 +28704,24 @@ biolink:Attribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:Attribute . biolink:OntologyClass a sh:NodeShape ; diff --git a/project/shex/biolink_model.shex b/project/shex/biolink_model.shex index 357537902..b38e8be5a 100644 --- a/project/shex/biolink_model.shex +++ b/project/shex/biolink_model.shex @@ -305,8 +305,11 @@ linkml:Sparqlpath xsd:string rdf:subject @ ; rdf:object @ ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -446,7 +449,10 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -459,8 +465,11 @@ linkml:Sparqlpath xsd:string & ; rdf:type [ ] ? ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -512,8 +521,11 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; rdf:subject @ ; @ ? ; - @ ? ; - @ ? + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ) ; rdf:type [ ] ) @@ -535,7 +547,10 @@ linkml:Sparqlpath xsd:string ) { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -573,14 +588,14 @@ linkml:Sparqlpath xsd:string @ ? ; @ ? ; @ ? ; + @ ? ; @ ? ; @ ? ; @linkml:String ? ; + @ ? ; rdf:subject @ ; rdf:predicate @ ; - rdf:object @ ; - @ ? ; - @ ? + rdf:object @ ) ; rdf:type [ ] ) @@ -649,7 +664,10 @@ linkml:Sparqlpath xsd:string ) { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -787,7 +805,7 @@ linkml:Sparqlpath xsd:string { ( $ ( & ; rdf:type [ ] ? ; - rdf:subject @ + rdf:subject @ ) ; rdf:type [ ] ? ) @@ -1068,7 +1086,10 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1097,7 +1118,10 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1124,8 +1148,11 @@ linkml:Sparqlpath xsd:string rdf:subject @ ; rdf:object @ ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -1171,7 +1198,7 @@ linkml:Sparqlpath xsd:string { ( $ ( & ; rdf:type [ ] ? ; - rdf:subject @ + rdf:subject @ ) ; rdf:type [ ] ? ) @@ -1251,13 +1278,19 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:object @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } { - ( $ rdf:object @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1269,15 +1302,21 @@ linkml:Sparqlpath xsd:string { ( $ ( & ; rdf:type [ ] ? ; - @ ? ; - @ ? + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ) ; rdf:type [ ] ? ) } { - ( $ rdf:object @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1297,8 +1336,8 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; & ; rdf:type [ ] ? ; - @ ? ; rdf:object @ ; + @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @linkml:Double ? ; @@ -1423,8 +1462,11 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; rdf:subject @ ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -1439,8 +1481,11 @@ linkml:Sparqlpath xsd:string { ( $ ( & ; rdf:type [ ] ? ; - @ ? ; - @ ? + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ) ; rdf:type [ ] ? ) @@ -1468,7 +1513,11 @@ linkml:Sparqlpath xsd:string ) { - ( $ @ ? ; + ( $ ( @ ? ; + rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1539,15 +1588,15 @@ linkml:Sparqlpath xsd:string @ ? ; @ ? ; @ ? ; + @ ? ; + @ ? ; @ ? ; @ ? ; @linkml:String ? ; + @ ? ; rdf:subject @ ; rdf:predicate @ ; - rdf:object @ ; - @ ? ; - @ ? ; - @ ? + rdf:object @ ) ; rdf:type [ ] ) @@ -1668,8 +1717,9 @@ linkml:Sparqlpath xsd:string rdf:object @ ; rdf:predicate @ ; @ ? ; - @ ? ; - @ ? ; + @ ? ; + @linkml:String ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -1682,7 +1732,10 @@ linkml:Sparqlpath xsd:string ) { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1909,8 +1962,11 @@ linkml:Sparqlpath xsd:string rdf:predicate @ ; rdf:object @ ; @ ? ; - @ ? ; - @ ? + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ) ; rdf:type [ ] ) @@ -1918,7 +1974,10 @@ linkml:Sparqlpath xsd:string ) { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -1955,8 +2014,11 @@ linkml:Sparqlpath xsd:string rdf:predicate @ ; rdf:subject @ ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -2179,7 +2241,10 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -2227,8 +2292,8 @@ linkml:Sparqlpath xsd:string ( $ ( & ; rdf:type [ ] ? ; rdf:subject @ ; - rdf:object @ ; - rdf:predicate @ + rdf:predicate @ ; + rdf:object @ ) ; rdf:type [ ] ) @@ -2247,7 +2312,10 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -2262,7 +2330,8 @@ linkml:Sparqlpath xsd:string { ( $ ( rdf:subject @ ; - rdf:predicate @ + rdf:predicate @ ; + rdf:object @ ) ; rdf:type [ ] ? ) @@ -2363,11 +2432,12 @@ linkml:Sparqlpath xsd:string CLOSED { ( $ ( & ; rdf:type [ ] ? ; - rdf:predicate @ ; @linkml:String ? ; @ ? ; + rdf:predicate @ ; @linkml:String ? ; - @ ? + @ ? ; + @ ? ) ; rdf:type [ ] ) @@ -2481,7 +2551,10 @@ linkml:Sparqlpath xsd:string } { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -2573,8 +2646,11 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; rdf:subject @ ; @ ? ; - @ ? ; - @ ? + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ) ; rdf:type [ ] ) @@ -2728,8 +2804,11 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; rdf:predicate @ ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; @@ -2987,8 +3066,8 @@ linkml:Sparqlpath xsd:string @linkml:String ? ; @linkml:String * ; @linkml:Uriorcurie * ; - rdfs:label @ ? ; - dcterms:type @linkml:String + + dcterms:type @linkml:String + ; + rdfs:label @ ? ) ; rdf:type [ ] ) @@ -3417,8 +3496,11 @@ linkml:Sparqlpath xsd:string rdf:predicate @ ; rdf:object @ ; @ ? ; - @ ? ; - @ ? + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ) ; rdf:type [ ] ) @@ -3426,7 +3508,10 @@ linkml:Sparqlpath xsd:string ) { - ( $ rdf:subject @ ; + ( $ ( rdf:subject @ ; + rdf:predicate @ ; + rdf:object @ + ) ; rdf:type [ ] ? ) } @@ -3469,8 +3554,11 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; rdf:subject @ ; @ ? ; - @ ? ; - @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; + @ ? ; + @linkml:String ? ; @ ? ; @linkml:Integer ? ; @linkml:Integer ? ; diff --git a/src/biolink_model/datamodel/model.py b/src/biolink_model/datamodel/model.py index e52b5aec5..8edcae368 100644 --- a/src/biolink_model/datamodel/model.py +++ b/src/biolink_model/datamodel/model.py @@ -1,5 +1,5 @@ # Auto generated from biolink_model.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-01-05T20:27:41 +# Generation date: 2024-01-09T01:12:11 # Schema: Biolink-Model # # id: https://w3id.org/biolink/biolink-model @@ -7998,6 +7998,8 @@ class CellLineToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.CellLineToEntityAssociationMixin subject: Union[str, CellLineId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -8005,6 +8007,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, CellLineId): self.subject = CellLineId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -8032,6 +8044,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, CellLineToDiseaseOrPhenotypicFeatureAssociationId): self.id = CellLineToDiseaseOrPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, DiseaseOrPhenotypicFeatureId): @@ -8056,6 +8078,8 @@ class ChemicalEntityToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalEntityToEntityAssociationMixin subject: Union[dict, ChemicalEntityOrGeneOrGeneProduct] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -8063,6 +8087,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, ChemicalEntityOrGeneOrGeneProduct): self.subject = ChemicalEntityOrGeneOrGeneProduct() + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -8078,9 +8112,26 @@ class DrugToEntityAssociationMixin(ChemicalEntityToEntityAssociationMixin): class_name: ClassVar[str] = "drug to entity association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.DrugToEntityAssociationMixin - subject: Union[str, DrugId] = None + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, DrugId): @@ -8101,9 +8152,26 @@ class ChemicalToEntityAssociationMixin(ChemicalEntityToEntityAssociationMixin): class_name: ClassVar[str] = "chemical to entity association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalToEntityAssociationMixin - subject: Union[dict, ChemicalEntityOrGeneOrGeneProduct] = None + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, ChemicalEntityOrGeneOrGeneProduct): @@ -8125,6 +8193,8 @@ class CaseToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.CaseToEntityAssociationMixin subject: Union[str, CaseId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -8132,6 +8202,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, CaseId): self.subject = CaseId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -8159,6 +8239,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ChemicalToChemicalAssociationId): self.id = ChemicalToChemicalAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, ChemicalEntityId): @@ -8319,6 +8409,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ChemicalToDiseaseOrPhenotypicFeatureAssociationId): self.id = ChemicalToDiseaseOrPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, DiseaseOrPhenotypicFeatureId): @@ -8355,6 +8455,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociationId): self.id = ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): @@ -8393,6 +8503,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociationId): self.id = ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): @@ -8427,6 +8547,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, GeneToPathwayAssociationId): self.id = GeneToPathwayAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, GeneOrGeneProduct): @@ -8510,6 +8635,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ChemicalToPathwayAssociationId): self.id = ChemicalToPathwayAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, ChemicalEntityId): @@ -8537,12 +8667,13 @@ class NamedThingAssociatedWithLikelihoodOfNamedThingAssociation(Association): id: Union[str, NamedThingAssociatedWithLikelihoodOfNamedThingAssociationId] = None subject: Union[str, NamedThingId] = None - object: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None subject_aspect_qualifier: Optional[str] = None subject_context_qualifier: Optional[Union[str, OntologyClassId]] = None object_aspect_qualifier: Optional[str] = None object_context_qualifier: Optional[Union[str, OntologyClassId]] = None + population_context_qualifier: Optional[Union[str, PopulationOfIndividualOrganismsId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -8550,11 +8681,21 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, NamedThingAssociatedWithLikelihoodOfNamedThingAssociationId): self.id = NamedThingAssociatedWithLikelihoodOfNamedThingAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) @@ -8567,6 +8708,9 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.object_context_qualifier is not None and not isinstance(self.object_context_qualifier, OntologyClassId): self.object_context_qualifier = OntologyClassId(self.object_context_qualifier) + if self.population_context_qualifier is not None and not isinstance(self.population_context_qualifier, PopulationOfIndividualOrganismsId): + self.population_context_qualifier = PopulationOfIndividualOrganismsId(self.population_context_qualifier) + super().__post_init__(**kwargs) if not isinstance(self.category, list): self.category = [self.category] if self.category is not None else [] @@ -8678,10 +8822,10 @@ class ChemicalAffectsGeneAssociation(Association): object_part_qualifier: Optional[Union[str, "GeneOrGeneProductOrChemicalPartQualifierEnum"]] = None object_aspect_qualifier: Optional[Union[str, "GeneOrGeneProductOrChemicalEntityAspectEnum"]] = None object_context_qualifier: Optional[Union[str, AnatomicalEntityId]] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None causal_mechanism_qualifier: Optional[Union[str, "CausalMechanismQualifierEnum"]] = None anatomical_context_qualifier: Optional[Union[str, AnatomicalEntityId]] = None qualified_predicate: Optional[str] = None - object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None species_context_qualifier: Optional[Union[str, OrganismTaxonId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -8735,6 +8879,9 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.object_context_qualifier is not None and not isinstance(self.object_context_qualifier, AnatomicalEntityId): self.object_context_qualifier = AnatomicalEntityId(self.object_context_qualifier) + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) + if self.causal_mechanism_qualifier is not None and not isinstance(self.causal_mechanism_qualifier, CausalMechanismQualifierEnum): self.causal_mechanism_qualifier = CausalMechanismQualifierEnum(self.causal_mechanism_qualifier) @@ -8744,9 +8891,6 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): self.qualified_predicate = str(self.qualified_predicate) - if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): - self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.species_context_qualifier is not None and not isinstance(self.species_context_qualifier, OrganismTaxonId): self.species_context_qualifier = OrganismTaxonId(self.species_context_qualifier) @@ -8783,11 +8927,11 @@ class GeneAffectsChemicalAssociation(Association): object_part_qualifier: Optional[Union[str, "GeneOrGeneProductOrChemicalPartQualifierEnum"]] = None object_aspect_qualifier: Optional[Union[str, "GeneOrGeneProductOrChemicalEntityAspectEnum"]] = None object_context_qualifier: Optional[Union[str, AnatomicalEntityId]] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_derivative_qualifier: Optional[Union[str, "ChemicalEntityDerivativeEnum"]] = None causal_mechanism_qualifier: Optional[Union[str, "CausalMechanismQualifierEnum"]] = None anatomical_context_qualifier: Optional[Union[str, AnatomicalEntityId]] = None qualified_predicate: Optional[str] = None - object_derivative_qualifier: Optional[Union[str, "ChemicalEntityDerivativeEnum"]] = None - object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None species_context_qualifier: Optional[Union[str, OrganismTaxonId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -8841,6 +8985,12 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.object_context_qualifier is not None and not isinstance(self.object_context_qualifier, AnatomicalEntityId): self.object_context_qualifier = AnatomicalEntityId(self.object_context_qualifier) + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) + + if self.object_derivative_qualifier is not None and not isinstance(self.object_derivative_qualifier, ChemicalEntityDerivativeEnum): + self.object_derivative_qualifier = ChemicalEntityDerivativeEnum(self.object_derivative_qualifier) + if self.causal_mechanism_qualifier is not None and not isinstance(self.causal_mechanism_qualifier, CausalMechanismQualifierEnum): self.causal_mechanism_qualifier = CausalMechanismQualifierEnum(self.causal_mechanism_qualifier) @@ -8850,12 +9000,6 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): self.qualified_predicate = str(self.qualified_predicate) - if self.object_derivative_qualifier is not None and not isinstance(self.object_derivative_qualifier, ChemicalEntityDerivativeEnum): - self.object_derivative_qualifier = ChemicalEntityDerivativeEnum(self.object_derivative_qualifier) - - if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): - self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.species_context_qualifier is not None and not isinstance(self.species_context_qualifier, OrganismTaxonId): self.species_context_qualifier = OrganismTaxonId(self.species_context_qualifier) @@ -8888,6 +9032,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, DrugToGeneAssociationId): self.id = DrugToGeneAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, GeneOrGeneProduct): @@ -8912,6 +9066,8 @@ class MaterialSampleToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleToEntityAssociationMixin subject: Union[str, MaterialSampleId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -8919,6 +9075,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, MaterialSampleId): self.subject = MaterialSampleId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -8936,8 +9102,8 @@ class MaterialSampleDerivationAssociation(Association): id: Union[str, MaterialSampleDerivationAssociationId] = None subject: Union[str, MaterialSampleId] = None - object: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -8950,16 +9116,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, MaterialSampleId): self.subject = MaterialSampleId(self.subject) - if self._is_empty(self.object): - self.MissingRequiredField("object") - if not isinstance(self.object, NamedThingId): - self.object = NamedThingId(self.object) - if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) if not isinstance(self.category, list): self.category = [self.category] if self.category is not None else [] @@ -8989,6 +9155,21 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, MaterialSampleToDiseaseOrPhenotypicFeatureAssociationId): self.id = MaterialSampleToDiseaseOrPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) if not isinstance(self.category, list): self.category = [self.category] if self.category is not None else [] @@ -9005,6 +9186,8 @@ class DiseaseToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.DiseaseToEntityAssociationMixin subject: Union[str, DiseaseId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -9012,6 +9195,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, DiseaseId): self.subject = DiseaseId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -9027,9 +9220,21 @@ class EntityToExposureEventAssociationMixin(YAMLRoot): class_name: ClassVar[str] = "entity to exposure event association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToExposureEventAssociationMixin + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None object: Union[str, ExposureEventId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, ExposureEventId): @@ -9061,13 +9266,28 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, DiseaseToExposureEventAssociationId): self.id = DiseaseToExposureEventAssociationId(self.id) - super().__post_init__(**kwargs) - if not isinstance(self.category, list): - self.category = [self.category] if self.category is not None else [] - self.category = [v if isinstance(v, CategoryType) else CategoryType(v) for v in self.category] - + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) -@dataclass + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + + super().__post_init__(**kwargs) + if not isinstance(self.category, list): + self.category = [self.category] if self.category is not None else [] + self.category = [v if isinstance(v, CategoryType) else CategoryType(v) for v in self.category] + + +@dataclass class EntityToOutcomeAssociationMixin(YAMLRoot): """ An association between some entity and an outcome @@ -9079,9 +9299,21 @@ class EntityToOutcomeAssociationMixin(YAMLRoot): class_name: ClassVar[str] = "entity to outcome association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToOutcomeAssociationMixin + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None object: Union[dict, Outcome] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, Outcome): @@ -9115,6 +9347,21 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ExposureEventToOutcomeAssociationId): self.id = ExposureEventToOutcomeAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self.population_context_qualifier is not None and not isinstance(self.population_context_qualifier, PopulationOfIndividualOrganismsId): self.population_context_qualifier = PopulationOfIndividualOrganismsId(self.population_context_qualifier) @@ -9139,9 +9386,27 @@ class FrequencyQualifierMixin(YAMLRoot): class_name: ClassVar[str] = "frequency qualifier mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.FrequencyQualifierMixin + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) @@ -9160,15 +9425,30 @@ class EntityToFeatureOrDiseaseQualifiersMixin(FrequencyQualifierMixin): class_name: ClassVar[str] = "entity to feature or disease qualifiers mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToFeatureOrDiseaseQualifiersMixin - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) + + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) @@ -9185,15 +9465,30 @@ class FeatureOrDiseaseQualifiersToEntityMixin(FrequencyQualifierMixin): class_name: ClassVar[str] = "feature or disease qualifiers to entity mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.FeatureOrDiseaseQualifiersToEntityMixin - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) + + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) @@ -9207,6 +9502,8 @@ class EntityToPhenotypicFeatureAssociationMixin(EntityToFeatureOrDiseaseQualifie class_name: ClassVar[str] = "entity to phenotypic feature association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToPhenotypicFeatureAssociationMixin + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None object: Union[str, PhenotypicFeatureId] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None has_count: Optional[int] = None @@ -9215,6 +9512,16 @@ class EntityToPhenotypicFeatureAssociationMixin(EntityToFeatureOrDiseaseQualifie has_percentage: Optional[float] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, PhenotypicFeatureId): @@ -9247,6 +9554,8 @@ class PhenotypicFeatureToEntityAssociationMixin(FeatureOrDiseaseQualifiersToEnti class_name: ClassVar[str] = "phenotypic feature to entity association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.PhenotypicFeatureToEntityAssociationMixin + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None subject: Union[str, PhenotypicFeatureId] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None has_count: Optional[int] = None @@ -9339,6 +9648,8 @@ class EntityToDiseaseAssociationMixin(EntityToFeatureOrDiseaseQualifiersMixin): class_name: ClassVar[str] = "entity to disease association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToDiseaseAssociationMixin + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None object: Union[str, DiseaseId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9360,6 +9671,8 @@ class DiseaseOrPhenotypicFeatureToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.DiseaseOrPhenotypicFeatureToEntityAssociationMixin subject: Union[str, DiseaseOrPhenotypicFeatureId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -9367,6 +9680,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, DiseaseOrPhenotypicFeatureId): self.subject = DiseaseOrPhenotypicFeatureId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -9394,6 +9717,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, DiseaseOrPhenotypicFeatureToLocationAssociationId): self.id = DiseaseOrPhenotypicFeatureToLocationAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, AnatomicalEntityId): @@ -9428,6 +9761,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociationId): self.id = DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): @@ -9453,9 +9791,21 @@ class EntityToDiseaseOrPhenotypicFeatureAssociationMixin(YAMLRoot): class_name: ClassVar[str] = "entity to disease or phenotypic feature association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToDiseaseOrPhenotypicFeatureAssociationMixin + subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None object: Union[str, DiseaseOrPhenotypicFeatureId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, DiseaseOrPhenotypicFeatureId): @@ -9474,6 +9824,8 @@ class GenotypeToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.GenotypeToEntityAssociationMixin subject: Union[str, GenotypeId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -9481,6 +9833,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, GenotypeId): self.subject = GenotypeId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -9502,8 +9864,11 @@ class GenotypeToPhenotypicFeatureAssociation(Association): predicate: Union[str, PredicateType] = None subject: Union[str, GenotypeId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9512,6 +9877,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, GenotypeToPhenotypicFeatureAssociationId): self.id = GenotypeToPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): @@ -9525,11 +9895,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) + + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9558,8 +9937,11 @@ class ExposureEventToPhenotypicFeatureAssociation(Association): object: Union[str, NamedThingId] = None subject: Union[str, ExposureEventId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9568,6 +9950,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, ExposureEventToPhenotypicFeatureAssociationId): self.id = ExposureEventToPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, ExposureEventId): @@ -9576,11 +9968,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9609,8 +10010,11 @@ class DiseaseToPhenotypicFeatureAssociation(Association): subject: Union[str, DiseaseId] = None object: Union[str, PhenotypicFeatureId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9619,6 +10023,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, DiseaseToPhenotypicFeatureAssociationId): self.id = DiseaseToPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, DiseaseId): @@ -9632,11 +10041,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9665,8 +10083,11 @@ class CaseToPhenotypicFeatureAssociation(Association): predicate: Union[str, PredicateType] = None object: Union[str, NamedThingId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9675,14 +10096,38 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, CaseToPhenotypicFeatureAssociationId): self.id = CaseToPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9711,8 +10156,11 @@ class BehaviorToBehavioralFeatureAssociation(Association): subject: Union[str, BehaviorId] = None object: Union[str, BehavioralFeatureId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9721,6 +10169,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, BehaviorToBehavioralFeatureAssociationId): self.id = BehaviorToBehavioralFeatureAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, BehaviorId): @@ -9734,11 +10187,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9759,6 +10221,8 @@ class GeneToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.GeneToEntityAssociationMixin subject: Union[dict, GeneOrGeneProduct] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -9766,6 +10230,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, GeneOrGeneProduct): self.subject = GeneOrGeneProduct(**as_dict(self.subject)) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -9779,6 +10253,8 @@ class VariantToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.VariantToEntityAssociationMixin subject: Union[str, SequenceVariantId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -9786,6 +10262,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, SequenceVariantId): self.subject = SequenceVariantId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -9805,8 +10291,9 @@ class GeneToDiseaseOrPhenotypicFeatureAssociation(Association): subject_aspect_qualifier: Optional[Union[str, "GeneOrGeneProductOrChemicalEntityAspectEnum"]] = None object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9839,11 +10326,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9868,8 +10358,9 @@ class GeneToPhenotypicFeatureAssociation(GeneToDiseaseOrPhenotypicFeatureAssocia subject: Union[dict, GeneOrGeneProduct] = None object: Union[str, PhenotypicFeatureId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -9891,11 +10382,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -9920,8 +10414,9 @@ class GeneToDiseaseAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation): subject: Union[dict, GeneOrGeneProduct] = None object: Union[str, DiseaseId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -9942,11 +10437,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -9968,8 +10466,9 @@ class CausalGeneToDiseaseAssociation(GeneToDiseaseAssociation): subject: Union[dict, GeneOrGeneProduct] = None object: Union[str, DiseaseId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -9990,11 +10489,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10016,8 +10518,9 @@ class CorrelatedGeneToDiseaseAssociation(GeneToDiseaseAssociation): subject: Union[dict, GeneOrGeneProduct] = None object: Union[str, DiseaseId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10038,11 +10541,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10064,8 +10570,9 @@ class DruggableGeneToDiseaseAssociation(GeneToDiseaseAssociation): subject: Union[dict, GeneOrGeneProduct] = None predicate: Union[str, PredicateType] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None has_evidence: Optional[Union[Union[str, "DruggableGeneCategoryEnum"], List[Union[str, "DruggableGeneCategoryEnum"]]]] = empty_list() def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -10087,11 +10594,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if not isinstance(self.has_evidence, list): self.has_evidence = [self.has_evidence] if self.has_evidence is not None else [] @@ -10117,8 +10627,11 @@ class PhenotypicFeatureToDiseaseAssociation(Association): object: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -10127,6 +10640,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, PhenotypicFeatureToDiseaseAssociationId): self.id = PhenotypicFeatureToDiseaseAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): @@ -10135,11 +10658,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -10174,6 +10706,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, VariantToGeneAssociationId): self.id = VariantToGeneAssociationId(self.id) + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, NamedThingId): + self.subject = NamedThingId(self.subject) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, GeneId): @@ -10268,6 +10805,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, VariantToPopulationAssociationId): self.id = VariantToPopulationAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, SequenceVariantId): @@ -10357,8 +10899,11 @@ class VariantToPhenotypicFeatureAssociation(Association): object: Union[str, NamedThingId] = None subject: Union[str, SequenceVariantId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None sex_qualifier: Optional[Union[str, BiologicalSexId]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): @@ -10367,6 +10912,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, VariantToPhenotypicFeatureAssociationId): self.id = VariantToPhenotypicFeatureAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, SequenceVariantId): @@ -10375,11 +10930,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) if self.sex_qualifier is not None and not isinstance(self.sex_qualifier, BiologicalSexId): self.sex_qualifier = BiologicalSexId(self.sex_qualifier) @@ -10404,8 +10968,11 @@ class VariantToDiseaseAssociation(Association): predicate: Union[str, PredicateType] = None object: Union[str, NamedThingId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10431,11 +10998,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10457,8 +11033,11 @@ class GenotypeToDiseaseAssociation(Association): predicate: Union[str, PredicateType] = None object: Union[str, NamedThingId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10484,11 +11063,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10512,6 +11100,7 @@ class ModelToDiseaseAssociationMixin(YAMLRoot): subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -10524,6 +11113,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.predicate, PredicateType): self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -10541,8 +11135,9 @@ class GeneAsAModelOfDiseaseAssociation(GeneToDiseaseAssociation): object: Union[str, DiseaseId] = None subject: Union[dict, GeneOrGeneProduct] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10558,11 +11153,14 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10584,8 +11182,11 @@ class VariantAsAModelOfDiseaseAssociation(VariantToDiseaseAssociation): object: Union[str, NamedThingId] = None subject: Union[str, SequenceVariantId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10601,11 +11202,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10627,8 +11237,11 @@ class GenotypeAsAModelOfDiseaseAssociation(GenotypeToDiseaseAssociation): object: Union[str, NamedThingId] = None subject: Union[str, GenotypeId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10644,11 +11257,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10670,8 +11292,11 @@ class CellLineAsAModelOfDiseaseAssociation(CellLineToDiseaseOrPhenotypicFeatureA object: Union[str, NamedThingId] = None subject: Union[str, CellLineId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10679,6 +11304,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, CellLineAsAModelOfDiseaseAssociationId): self.id = CellLineAsAModelOfDiseaseAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, CellLineId): @@ -10687,11 +11322,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10713,8 +11357,11 @@ class OrganismalEntityAsAModelOfDiseaseAssociation(Association): object: Union[str, NamedThingId] = None subject: Union[str, OrganismalEntityId] = None frequency_qualifier: Optional[Union[str, FrequencyValue]] = None - severity_qualifier: Optional[Union[str, SeverityValueId]] = None - onset_qualifier: Optional[Union[str, OnsetId]] = None + subject_aspect_qualifier: Optional[str] = None + subject_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + object_aspect_qualifier: Optional[str] = None + object_direction_qualifier: Optional[Union[str, "DirectionQualifierEnum"]] = None + qualified_predicate: Optional[str] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): @@ -10722,6 +11369,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, OrganismalEntityAsAModelOfDiseaseAssociationId): self.id = OrganismalEntityAsAModelOfDiseaseAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, OrganismalEntityId): @@ -10730,11 +11387,20 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self.frequency_qualifier is not None and not isinstance(self.frequency_qualifier, FrequencyValue): self.frequency_qualifier = FrequencyValue(self.frequency_qualifier) - if self.severity_qualifier is not None and not isinstance(self.severity_qualifier, SeverityValueId): - self.severity_qualifier = SeverityValueId(self.severity_qualifier) + if self.subject_aspect_qualifier is not None and not isinstance(self.subject_aspect_qualifier, str): + self.subject_aspect_qualifier = str(self.subject_aspect_qualifier) + + if self.subject_direction_qualifier is not None and not isinstance(self.subject_direction_qualifier, DirectionQualifierEnum): + self.subject_direction_qualifier = DirectionQualifierEnum(self.subject_direction_qualifier) + + if self.object_aspect_qualifier is not None and not isinstance(self.object_aspect_qualifier, str): + self.object_aspect_qualifier = str(self.object_aspect_qualifier) + + if self.object_direction_qualifier is not None and not isinstance(self.object_direction_qualifier, DirectionQualifierEnum): + self.object_direction_qualifier = DirectionQualifierEnum(self.object_direction_qualifier) - if self.onset_qualifier is not None and not isinstance(self.onset_qualifier, OnsetId): - self.onset_qualifier = OnsetId(self.onset_qualifier) + if self.qualified_predicate is not None and not isinstance(self.qualified_predicate, str): + self.qualified_predicate = str(self.qualified_predicate) super().__post_init__(**kwargs) if not isinstance(self.category, list): @@ -10999,6 +11665,8 @@ class MacromolecularMachineToEntityAssociationMixin(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.MacromolecularMachineToEntityAssociationMixin subject: Union[str, NamedThingId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -11006,6 +11674,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, NamedThingId): self.subject = NamedThingId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -11034,6 +11712,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, MacromolecularMachineToMolecularActivityAssociationId): self.id = MacromolecularMachineToMolecularActivityAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, MolecularActivityId): @@ -11070,6 +11753,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, MacromolecularMachineToBiologicalProcessAssociationId): self.id = MacromolecularMachineToBiologicalProcessAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, BiologicalProcessId): @@ -11106,6 +11794,11 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.id, MacromolecularMachineToCellularComponentAssociationId): self.id = MacromolecularMachineToCellularComponentAssociationId(self.id) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, CellularComponentId): @@ -11740,6 +12433,8 @@ class OrganismTaxonToEntityAssociation(YAMLRoot): class_model_uri: ClassVar[URIRef] = BIOLINK.OrganismTaxonToEntityAssociation subject: Union[str, OrganismTaxonId] = None + predicate: Union[str, PredicateType] = None + object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): @@ -11747,6 +12442,16 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if not isinstance(self.subject, OrganismTaxonId): self.subject = OrganismTaxonId(self.subject) + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, NamedThingId): + self.object = NamedThingId(self.object) + super().__post_init__(**kwargs) @@ -11768,6 +12473,11 @@ class OrganismTaxonToOrganismTaxonAssociation(Association): object: Union[str, OrganismTaxonId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, OrganismTaxonId): diff --git a/src/biolink_model/datamodel/pydanticmodel.py b/src/biolink_model/datamodel/pydanticmodel.py index 54c0ca011..20ecd1174 100644 --- a/src/biolink_model/datamodel/pydanticmodel.py +++ b/src/biolink_model/datamodel/pydanticmodel.py @@ -413,19 +413,19 @@ class PredicateMapping(ConfiguredBaseModel): A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place. """ mapped_predicate: Optional[str] = Field(None, description="""The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs.""") - subject_aspect_qualifier: Optional[str] = Field(None) - subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - subject_form_or_variant_qualifier: Optional[str] = Field(None) - subject_part_qualifier: Optional[str] = Field(None) - subject_derivative_qualifier: Optional[str] = Field(None) + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + subject_form_or_variant_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[str] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") subject_context_qualifier: Optional[str] = Field(None) predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") - object_aspect_qualifier: Optional[str] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - object_form_or_variant_qualifier: Optional[str] = Field(None) - object_part_qualifier: Optional[str] = Field(None) - object_derivative_qualifier: Optional[str] = Field(None) + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + object_form_or_variant_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[str] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") + object_derivative_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement).""") object_context_qualifier: Optional[str] = Field(None) causal_mechanism_qualifier: Optional[CausalMechanismQualifierEnum] = Field(None, description="""A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')""") anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") @@ -666,6 +666,7 @@ class OrganismTaxon(NamedThing): """ A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies. """ + has_taxonomic_rank: Optional[str] = Field(None) provided_by: Optional[List[str]] = Field(None, description="""The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph.""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") full_name: Optional[str] = Field(None, description="""a long-form human readable name for a thing""") @@ -1102,6 +1103,7 @@ class Publication(InformationContentEntity): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1129,6 +1131,7 @@ class Book(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1157,6 +1160,7 @@ class BookChapter(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1187,6 +1191,7 @@ class Serial(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1218,6 +1223,7 @@ class Article(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1249,6 +1255,7 @@ class JournalArticle(Article): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1276,6 +1283,7 @@ class Patent(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1303,6 +1311,7 @@ class WebPage(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1330,6 +1339,7 @@ class PreprintPublication(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1357,6 +1367,7 @@ class DrugLabel(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -4474,35 +4485,45 @@ class CellLineToEntityAssociationMixin(ConfiguredBaseModel): """ An relationship between a cell line and another entity """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ChemicalEntityToEntityAssociationMixin(ConfiguredBaseModel): """ An interaction between a chemical entity and another entity """ - None + subject: str = Field(..., description="""the chemical entity that is an interactor""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class DrugToEntityAssociationMixin(ChemicalEntityToEntityAssociationMixin): """ An interaction between a drug and another entity """ - None + subject: str = Field(..., description="""the drug that is an interactor""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ChemicalToEntityAssociationMixin(ChemicalEntityToEntityAssociationMixin): """ An interaction between a chemical entity and another entity """ - None + subject: str = Field(..., description="""the chemical entity or entity that is an interactor""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class CaseToEntityAssociationMixin(ConfiguredBaseModel): """ An abstract association for use where the case is the subject """ - None + subject: str = Field(..., description="""the case (e.g. patient) that has the property""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ChemicalToChemicalAssociation(ChemicalToEntityAssociationMixin, Association): @@ -4751,8 +4772,13 @@ class ChemicalToPathwayAssociation(ChemicalToEntityAssociationMixin, Association class NamedThingAssociatedWithLikelihoodOfNamedThingAssociation(Association): subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_context_qualifier: Optional[str] = Field(None) predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_context_qualifier: Optional[str] = Field(None) + population_context_qualifier: Optional[str] = Field(None, description="""a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -4790,12 +4816,12 @@ class ChemicalGeneInteractionAssociation(ChemicalToEntityAssociationMixin, Assoc """ describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction) """ - subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None) + subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") subject_context_qualifier: Optional[str] = Field(None) - object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) + object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") object_context_qualifier: Optional[str] = Field(None) anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") subject: str = Field(..., description="""the chemical entity or entity that is an interactor""") @@ -4838,19 +4864,21 @@ class ChemicalAffectsGeneAssociation(Association): """ Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.) """ - subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None) - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") subject_context_qualifier: Optional[str] = Field(None) - subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") + object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") object_context_qualifier: Optional[str] = Field(None) + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") causal_mechanism_qualifier: Optional[CausalMechanismQualifierEnum] = Field(None, description="""A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')""") anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") + species_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place.""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") @@ -4891,19 +4919,22 @@ class GeneAffectsChemicalAssociation(Association): """ Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.) """ - subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - subject_derivative_qualifier: Optional[str] = Field(None) - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") subject_context_qualifier: Optional[str] = Field(None) - subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") + object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") object_context_qualifier: Optional[str] = Field(None) + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + object_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement).""") causal_mechanism_qualifier: Optional[CausalMechanismQualifierEnum] = Field(None, description="""A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')""") anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") + species_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place.""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") @@ -4984,7 +5015,9 @@ class MaterialSampleToEntityAssociationMixin(ConfiguredBaseModel): """ An association between a material sample and something. """ - None + subject: str = Field(..., description="""the material sample being described""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class MaterialSampleDerivationAssociation(Association): @@ -5029,14 +5062,18 @@ class MaterialSampleDerivationAssociation(Association): class DiseaseToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""disease class""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class EntityToExposureEventAssociationMixin(ConfiguredBaseModel): """ An association between some entity and an exposure event. """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class DiseaseToExposureEventAssociation(EntityToExposureEventAssociationMixin, DiseaseToEntityAssociationMixin, Association): @@ -5083,7 +5120,9 @@ class EntityToOutcomeAssociationMixin(ConfiguredBaseModel): """ An association between some entity and an outcome """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ExposureEventToOutcomeAssociation(EntityToOutcomeAssociationMixin, Association): @@ -5133,35 +5172,56 @@ class FrequencyQualifierMixin(ConfiguredBaseModel): Qualifier for frequency type associations """ frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class EntityToFeatureOrDiseaseQualifiersMixin(FrequencyQualifierMixin): """ Qualifiers for entity to disease or phenotype associations. """ - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class FeatureOrDiseaseQualifiersToEntityMixin(FrequencyQualifierMixin): """ Qualifiers for disease or phenotype to entity associations. """ - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class EntityToPhenotypicFeatureAssociationMixin(EntityToFeatureOrDiseaseQualifiersMixin, FrequencyQuantifier): + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") has_count: Optional[int] = Field(None, description="""number of things with a particular property""") has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5172,9 +5232,15 @@ class PhenotypicFeatureToEntityAssociationMixin(FeatureOrDiseaseQualifiersToEnti has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class InformationContentEntityToNamedThingAssociation(Association): @@ -5221,14 +5287,22 @@ class EntityToDiseaseAssociationMixin(EntityToFeatureOrDiseaseQualifiersMixin): """ mixin class for any association whose object (target node) is a disease """ - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""disease""") class DiseaseOrPhenotypicFeatureToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""disease or phenotype""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class DiseaseOrPhenotypicFeatureToLocationAssociation(DiseaseOrPhenotypicFeatureToEntityAssociationMixin, Association): @@ -5313,7 +5387,9 @@ class DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation(DiseaseOrPhenoty class EntityToDiseaseOrPhenotypicFeatureAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""disease or phenotype""") class CellLineToDiseaseOrPhenotypicFeatureAssociation(EntityToDiseaseOrPhenotypicFeatureAssociationMixin, CellLineToEntityAssociationMixin, Association): @@ -5441,10 +5517,10 @@ class ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation(C """ This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect. """ - FDA_adverse_event_level: Optional[FDAIDAAdverseEventEnum] = Field(None) subject: str = Field(..., description="""the chemical entity or entity that is an interactor""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease or phenotype""") + FDA_adverse_event_level: Optional[FDAIDAAdverseEventEnum] = Field(None) negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5520,17 +5596,19 @@ class MaterialSampleToDiseaseOrPhenotypicFeatureAssociation(EntityToDiseaseOrPhe class GenotypeToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""genotype that is the subject of the association""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GenotypeToPhenotypicFeatureAssociation(GenotypeToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin, Association): """ Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""genotype that is associated with the phenotypic feature""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5566,8 +5644,11 @@ class GenotypeToPhenotypicFeatureAssociation(GenotypeToEntityAssociationMixin, E has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5575,10 +5656,10 @@ class ExposureEventToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssoc """ Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5614,8 +5695,11 @@ class ExposureEventToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssoc has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5623,10 +5707,10 @@ class DiseaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociation """ An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""disease class""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5662,8 +5746,11 @@ class DiseaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociation has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5671,10 +5758,10 @@ class CaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociationMix """ An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""the case (e.g. patient) that has the property""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5710,8 +5797,11 @@ class CaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociationMix has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5719,10 +5809,10 @@ class BehaviorToBehavioralFeatureAssociation(EntityToPhenotypicFeatureAssociatio """ An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""behavior that is the subject of the association""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""behavioral feature that is the object of the association""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5758,14 +5848,19 @@ class BehaviorToBehavioralFeatureAssociation(EntityToPhenotypicFeatureAssociatio has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class GeneToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""gene that is the subject of the association""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GeneToPathwayAssociation(GeneToEntityAssociationMixin, Association): @@ -5810,17 +5905,19 @@ class GeneToPathwayAssociation(GeneToEntityAssociationMixin, Association): class VariantToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""a sequence variant in which the allele state is associated with some other entity""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GeneToDiseaseOrPhenotypicFeatureAssociation(GeneToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin, Association): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") subject: str = Field(..., description="""gene in which variation is correlated with the phenotypic feature""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5856,19 +5953,20 @@ class GeneToDiseaseOrPhenotypicFeatureAssociation(GeneToEntityAssociationMixin, has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class GeneToPhenotypicFeatureAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation, GeneToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin): - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) subject: str = Field(..., description="""gene in which variation is correlated with the phenotypic feature""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5904,19 +6002,20 @@ class GeneToPhenotypicFeatureAssociation(GeneToDiseaseOrPhenotypicFeatureAssocia has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class GeneToDiseaseAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5952,19 +6051,20 @@ class GeneToDiseaseAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation, Gene has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class CausalGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is shown to cause the disease.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6000,19 +6100,20 @@ class CausalGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssoc has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class CorrelatedGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is shown to correlate with the disease.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6048,19 +6149,20 @@ class CorrelatedGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityA has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class DruggableGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6096,8 +6198,9 @@ class DruggableGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAs has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6142,8 +6245,11 @@ class PhenotypicFeatureToDiseaseAssociation(EntityToDiseaseAssociationMixin, Phe has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6235,14 +6341,14 @@ class VariantToPopulationAssociation(VariantToEntityAssociationMixin, FrequencyQ """ An association between a variant and a population, where the variant has particular frequency in the population """ + subject: str = Field(..., description="""an allele that has a certain frequency in a given population""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""the population that is observed to have the frequency""") has_count: Optional[int] = Field(None, description="""number in object population that carry a particular allele, aka allele count""") has_total: Optional[int] = Field(None, description="""number all populations that carry a particular allele, aka allele number""") has_quotient: Optional[float] = Field(None, description="""frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency""") has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") - subject: str = Field(..., description="""an allele that has a certain frequency in a given population""") - predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") - object: str = Field(..., description="""the population that is observed to have the frequency""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6318,10 +6424,10 @@ class PopulationToPopulationAssociation(Association): class VariantToPhenotypicFeatureAssociation(VariantToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin, Association): - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""a sequence variant in which the allele state is associated in some way with the phenotype state""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6357,8 +6463,11 @@ class VariantToPhenotypicFeatureAssociation(VariantToEntityAssociationMixin, Ent has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6398,8 +6507,11 @@ class VariantToDiseaseAssociation(VariantToEntityAssociationMixin, EntityToDisea description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6439,8 +6551,11 @@ class GenotypeToDiseaseAssociation(GenotypeToEntityAssociationMixin, EntityToDis description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6448,17 +6563,19 @@ class ModelToDiseaseAssociationMixin(ConfiguredBaseModel): """ This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease """ - None + subject: str = Field(..., description="""The entity that serves as the model of the disease. This may be an organism, a strain of organism, a genotype or variant that exhibits similar features, or a gene that when mutated exhibits features of the disease""") + predicate: str = Field(..., description="""The relationship to the disease""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GeneAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, GeneToDiseaseAssociation, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease.""") predicate: str = Field(..., description="""The relationship to the disease""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6494,8 +6611,9 @@ class GeneAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, GeneToDis has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6535,8 +6653,11 @@ class VariantAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, Varian description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6576,8 +6697,11 @@ class GenotypeAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, Genot description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6617,8 +6741,11 @@ class CellLineAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, CellL description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6658,8 +6785,11 @@ class OrganismalEntityAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixi description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6741,13 +6871,13 @@ class TaxonToTaxonAssociation(Association): class GeneHasVariantThatContributesToDiseaseAssociation(GeneToDiseaseAssociation): - subject_form_or_variant_qualifier: Optional[str] = Field(None) - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") + subject_form_or_variant_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") subject: str = Field(..., description="""A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6783,8 +6913,9 @@ class GeneHasVariantThatContributesToDiseaseAssociation(GeneToDiseaseAssociation has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6914,7 +7045,9 @@ class MacromolecularMachineToEntityAssociationMixin(ConfiguredBaseModel): """ an association which has a macromolecular machine mixin as a subject """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class MacromolecularMachineToMolecularActivityAssociation(MacromolecularMachineToEntityAssociationMixin, FunctionalAssociation): @@ -7484,7 +7617,7 @@ class ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation(Association): """ A regulatory relationship between two genes """ - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""the direction is always from regulator to regulated""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") @@ -7643,7 +7776,9 @@ class OrganismTaxonToEntityAssociation(ConfiguredBaseModel): """ An association between an organism taxon and another entity """ - None + subject: str = Field(..., description="""organism taxon that is the subject of the association""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class OrganismTaxonToOrganismTaxonAssociation(OrganismTaxonToEntityAssociation, Association): diff --git a/src/biolink_model/datamodel/pydanticmodel_v2.py b/src/biolink_model/datamodel/pydanticmodel_v2.py index a2fc1063c..0bbee612e 100644 --- a/src/biolink_model/datamodel/pydanticmodel_v2.py +++ b/src/biolink_model/datamodel/pydanticmodel_v2.py @@ -409,19 +409,19 @@ class PredicateMapping(ConfiguredBaseModel): A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place. """ mapped_predicate: Optional[str] = Field(None, description="""The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs.""") - subject_aspect_qualifier: Optional[str] = Field(None) - subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - subject_form_or_variant_qualifier: Optional[str] = Field(None) - subject_part_qualifier: Optional[str] = Field(None) - subject_derivative_qualifier: Optional[str] = Field(None) + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + subject_form_or_variant_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[str] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") subject_context_qualifier: Optional[str] = Field(None) predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") - object_aspect_qualifier: Optional[str] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - object_form_or_variant_qualifier: Optional[str] = Field(None) - object_part_qualifier: Optional[str] = Field(None) - object_derivative_qualifier: Optional[str] = Field(None) + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + object_form_or_variant_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[str] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") + object_derivative_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement).""") object_context_qualifier: Optional[str] = Field(None) causal_mechanism_qualifier: Optional[CausalMechanismQualifierEnum] = Field(None, description="""A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')""") anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") @@ -662,6 +662,7 @@ class OrganismTaxon(NamedThing): """ A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies. """ + has_taxonomic_rank: Optional[str] = Field(None) provided_by: Optional[List[str]] = Field(None, description="""The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph.""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") full_name: Optional[str] = Field(None, description="""a long-form human readable name for a thing""") @@ -1098,6 +1099,7 @@ class Publication(InformationContentEntity): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1125,6 +1127,7 @@ class Book(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1153,6 +1156,7 @@ class BookChapter(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1183,6 +1187,7 @@ class Serial(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1214,6 +1219,7 @@ class Article(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1245,6 +1251,7 @@ class JournalArticle(Article): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1272,6 +1279,7 @@ class Patent(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1299,6 +1307,7 @@ class WebPage(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1326,6 +1335,7 @@ class PreprintPublication(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -1353,6 +1363,7 @@ class DrugLabel(Publication): keywords: Optional[List[str]] = Field(default_factory=list, description="""keywords tagging a publication""") mesh_terms: Optional[List[str]] = Field(None, description="""mesh terms tagging a publication""") xref: Optional[List[str]] = Field(default_factory=list, description="""A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references.""") + publication_type: List[str] = Field(..., description="""Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass.""") license: Optional[str] = Field(None) rights: Optional[str] = Field(None) format: Optional[str] = Field(None) @@ -4470,35 +4481,45 @@ class CellLineToEntityAssociationMixin(ConfiguredBaseModel): """ An relationship between a cell line and another entity """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ChemicalEntityToEntityAssociationMixin(ConfiguredBaseModel): """ An interaction between a chemical entity and another entity """ - None + subject: str = Field(..., description="""the chemical entity that is an interactor""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class DrugToEntityAssociationMixin(ChemicalEntityToEntityAssociationMixin): """ An interaction between a drug and another entity """ - None + subject: str = Field(..., description="""the drug that is an interactor""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ChemicalToEntityAssociationMixin(ChemicalEntityToEntityAssociationMixin): """ An interaction between a chemical entity and another entity """ - None + subject: str = Field(..., description="""the chemical entity or entity that is an interactor""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class CaseToEntityAssociationMixin(ConfiguredBaseModel): """ An abstract association for use where the case is the subject """ - None + subject: str = Field(..., description="""the case (e.g. patient) that has the property""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ChemicalToChemicalAssociation(ChemicalToEntityAssociationMixin, Association): @@ -4747,8 +4768,13 @@ class ChemicalToPathwayAssociation(ChemicalToEntityAssociationMixin, Association class NamedThingAssociatedWithLikelihoodOfNamedThingAssociation(Association): subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_context_qualifier: Optional[str] = Field(None) predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_context_qualifier: Optional[str] = Field(None) + population_context_qualifier: Optional[str] = Field(None, description="""a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -4786,12 +4812,12 @@ class ChemicalGeneInteractionAssociation(ChemicalToEntityAssociationMixin, Assoc """ describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction) """ - subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None) + subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") subject_context_qualifier: Optional[str] = Field(None) - object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) + object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") object_context_qualifier: Optional[str] = Field(None) anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") subject: str = Field(..., description="""the chemical entity or entity that is an interactor""") @@ -4834,19 +4860,21 @@ class ChemicalAffectsGeneAssociation(Association): """ Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.) """ - subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None) - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") subject_context_qualifier: Optional[str] = Field(None) - subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") + object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") object_context_qualifier: Optional[str] = Field(None) + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") causal_mechanism_qualifier: Optional[CausalMechanismQualifierEnum] = Field(None, description="""A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')""") anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") + species_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place.""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") @@ -4887,19 +4915,22 @@ class GeneAffectsChemicalAssociation(Association): """ Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.) """ - subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - subject_derivative_qualifier: Optional[str] = Field(None) - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement).""") + subject_derivative_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement).""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") subject_context_qualifier: Optional[str] = Field(None) - subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None) - object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None) - object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_form_or_variant_qualifier: Optional[ChemicalOrGeneOrGeneProductFormOrVariantEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement).""") + object_part_qualifier: Optional[GeneOrGeneProductOrChemicalPartQualifierEnum] = Field(None, description="""defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement).""") + object_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") object_context_qualifier: Optional[str] = Field(None) + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + object_derivative_qualifier: Optional[ChemicalEntityDerivativeEnum] = Field(None, description="""A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement).""") causal_mechanism_qualifier: Optional[CausalMechanismQualifierEnum] = Field(None, description="""A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')""") anatomical_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location).""") qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") + species_context_qualifier: Optional[str] = Field(None, description="""A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place.""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") @@ -4980,7 +5011,9 @@ class MaterialSampleToEntityAssociationMixin(ConfiguredBaseModel): """ An association between a material sample and something. """ - None + subject: str = Field(..., description="""the material sample being described""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class MaterialSampleDerivationAssociation(Association): @@ -5025,14 +5058,18 @@ class MaterialSampleDerivationAssociation(Association): class DiseaseToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""disease class""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class EntityToExposureEventAssociationMixin(ConfiguredBaseModel): """ An association between some entity and an exposure event. """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class DiseaseToExposureEventAssociation(EntityToExposureEventAssociationMixin, DiseaseToEntityAssociationMixin, Association): @@ -5079,7 +5116,9 @@ class EntityToOutcomeAssociationMixin(ConfiguredBaseModel): """ An association between some entity and an outcome """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class ExposureEventToOutcomeAssociation(EntityToOutcomeAssociationMixin, Association): @@ -5129,35 +5168,56 @@ class FrequencyQualifierMixin(ConfiguredBaseModel): Qualifier for frequency type associations """ frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class EntityToFeatureOrDiseaseQualifiersMixin(FrequencyQualifierMixin): """ Qualifiers for entity to disease or phenotype associations. """ - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class FeatureOrDiseaseQualifiersToEntityMixin(FrequencyQualifierMixin): """ Qualifiers for disease or phenotype to entity associations. """ - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class EntityToPhenotypicFeatureAssociationMixin(EntityToFeatureOrDiseaseQualifiersMixin, FrequencyQuantifier): + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") has_count: Optional[int] = Field(None, description="""number of things with a particular property""") has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5168,9 +5228,15 @@ class PhenotypicFeatureToEntityAssociationMixin(FeatureOrDiseaseQualifiersToEnti has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class InformationContentEntityToNamedThingAssociation(Association): @@ -5217,14 +5283,22 @@ class EntityToDiseaseAssociationMixin(EntityToFeatureOrDiseaseQualifiersMixin): """ mixin class for any association whose object (target node) is a disease """ - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""disease""") class DiseaseOrPhenotypicFeatureToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""disease or phenotype""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class DiseaseOrPhenotypicFeatureToLocationAssociation(DiseaseOrPhenotypicFeatureToEntityAssociationMixin, Association): @@ -5309,7 +5383,9 @@ class DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation(DiseaseOrPhenoty class EntityToDiseaseOrPhenotypicFeatureAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""disease or phenotype""") class CellLineToDiseaseOrPhenotypicFeatureAssociation(EntityToDiseaseOrPhenotypicFeatureAssociationMixin, CellLineToEntityAssociationMixin, Association): @@ -5437,10 +5513,10 @@ class ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation(C """ This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect. """ - FDA_adverse_event_level: Optional[FDAIDAAdverseEventEnum] = Field(None) subject: str = Field(..., description="""the chemical entity or entity that is an interactor""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease or phenotype""") + FDA_adverse_event_level: Optional[FDAIDAAdverseEventEnum] = Field(None) negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5516,17 +5592,19 @@ class MaterialSampleToDiseaseOrPhenotypicFeatureAssociation(EntityToDiseaseOrPhe class GenotypeToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""genotype that is the subject of the association""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GenotypeToPhenotypicFeatureAssociation(GenotypeToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin, Association): """ Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""genotype that is associated with the phenotypic feature""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5562,8 +5640,11 @@ class GenotypeToPhenotypicFeatureAssociation(GenotypeToEntityAssociationMixin, E has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5571,10 +5652,10 @@ class ExposureEventToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssoc """ Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5610,8 +5691,11 @@ class ExposureEventToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssoc has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5619,10 +5703,10 @@ class DiseaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociation """ An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""disease class""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5658,8 +5742,11 @@ class DiseaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociation has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5667,10 +5754,10 @@ class CaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociationMix """ An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""the case (e.g. patient) that has the property""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5706,8 +5793,11 @@ class CaseToPhenotypicFeatureAssociation(EntityToPhenotypicFeatureAssociationMix has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -5715,10 +5805,10 @@ class BehaviorToBehavioralFeatureAssociation(EntityToPhenotypicFeatureAssociatio """ An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior. """ - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""behavior that is the subject of the association""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""behavioral feature that is the object of the association""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5754,14 +5844,19 @@ class BehaviorToBehavioralFeatureAssociation(EntityToPhenotypicFeatureAssociatio has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class GeneToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""gene that is the subject of the association""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GeneToPathwayAssociation(GeneToEntityAssociationMixin, Association): @@ -5806,17 +5901,19 @@ class GeneToPathwayAssociation(GeneToEntityAssociationMixin, Association): class VariantToEntityAssociationMixin(ConfiguredBaseModel): - None + subject: str = Field(..., description="""a sequence variant in which the allele state is associated with some other entity""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GeneToDiseaseOrPhenotypicFeatureAssociation(GeneToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin, Association): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") subject: str = Field(..., description="""gene in which variation is correlated with the phenotypic feature""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5852,19 +5949,20 @@ class GeneToDiseaseOrPhenotypicFeatureAssociation(GeneToEntityAssociationMixin, has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class GeneToPhenotypicFeatureAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation, GeneToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin): - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) subject: str = Field(..., description="""gene in which variation is correlated with the phenotypic feature""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5900,19 +5998,20 @@ class GeneToPhenotypicFeatureAssociation(GeneToDiseaseOrPhenotypicFeatureAssocia has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class GeneToDiseaseAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5948,19 +6047,20 @@ class GeneToDiseaseAssociation(GeneToDiseaseOrPhenotypicFeatureAssociation, Gene has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class CausalGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is shown to cause the disease.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -5996,19 +6096,20 @@ class CausalGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssoc has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class CorrelatedGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is shown to correlate with the disease.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6044,19 +6145,20 @@ class CorrelatedGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityA has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") class DruggableGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAssociationMixin, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6092,8 +6194,9 @@ class DruggableGeneToDiseaseAssociation(GeneToDiseaseAssociation, GeneToEntityAs has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6138,8 +6241,11 @@ class PhenotypicFeatureToDiseaseAssociation(EntityToDiseaseAssociationMixin, Phe has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6231,14 +6337,14 @@ class VariantToPopulationAssociation(VariantToEntityAssociationMixin, FrequencyQ """ An association between a variant and a population, where the variant has particular frequency in the population """ + subject: str = Field(..., description="""an allele that has a certain frequency in a given population""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""the population that is observed to have the frequency""") has_count: Optional[int] = Field(None, description="""number in object population that carry a particular allele, aka allele count""") has_total: Optional[int] = Field(None, description="""number all populations that carry a particular allele, aka allele number""") has_quotient: Optional[float] = Field(None, description="""frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency""") has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") - subject: str = Field(..., description="""an allele that has a certain frequency in a given population""") - predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") - object: str = Field(..., description="""the population that is observed to have the frequency""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6314,10 +6420,10 @@ class PopulationToPopulationAssociation(Association): class VariantToPhenotypicFeatureAssociation(VariantToEntityAssociationMixin, EntityToPhenotypicFeatureAssociationMixin, Association): - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""a sequence variant in which the allele state is associated in some way with the phenotype state""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6353,8 +6459,11 @@ class VariantToPhenotypicFeatureAssociation(VariantToEntityAssociationMixin, Ent has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6394,8 +6503,11 @@ class VariantToDiseaseAssociation(VariantToEntityAssociationMixin, EntityToDisea description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6435,8 +6547,11 @@ class GenotypeToDiseaseAssociation(GenotypeToEntityAssociationMixin, EntityToDis description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6444,17 +6559,19 @@ class ModelToDiseaseAssociationMixin(ConfiguredBaseModel): """ This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease """ - None + subject: str = Field(..., description="""The entity that serves as the model of the disease. This may be an organism, a strain of organism, a genotype or variant that exhibits similar features, or a gene that when mutated exhibits features of the disease""") + predicate: str = Field(..., description="""The relationship to the disease""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class GeneAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, GeneToDiseaseAssociation, EntityToDiseaseAssociationMixin): - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") subject: str = Field(..., description="""A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease.""") predicate: str = Field(..., description="""The relationship to the disease""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6490,8 +6607,9 @@ class GeneAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, GeneToDis has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6531,8 +6649,11 @@ class VariantAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, Varian description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6572,8 +6693,11 @@ class GenotypeAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, Genot description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6613,8 +6737,11 @@ class CellLineAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixin, CellL description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6654,8 +6781,11 @@ class OrganismalEntityAsAModelOfDiseaseAssociation(ModelToDiseaseAssociationMixi description: Optional[str] = Field(None, description="""a human-readable description of an entity""") has_attribute: Optional[List[str]] = Field(None, description="""connects any entity to an attribute""") deprecated: Optional[bool] = Field(None, description="""A boolean flag indicating that an entity is no longer considered current or valid.""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6737,13 +6867,13 @@ class TaxonToTaxonAssociation(Association): class GeneHasVariantThatContributesToDiseaseAssociation(GeneToDiseaseAssociation): - subject_form_or_variant_qualifier: Optional[str] = Field(None) - subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None) - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) - sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") + subject_form_or_variant_qualifier: Optional[str] = Field(None, description="""A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement).""") subject: str = Field(..., description="""A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease.""") predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") object: str = Field(..., description="""disease""") + subject_aspect_qualifier: Optional[GeneOrGeneProductOrChemicalEntityAspectEnum] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement).""") + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") + sex_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state whether the association is specific to a particular sex.""") negated: Optional[bool] = Field(None, description="""if set to true, then the association is negated i.e. is not true""") qualifier: Optional[str] = Field(None, description="""grouping slot for all qualifiers on an edge. useful for testing compliance with association classes""") qualifiers: Optional[List[str]] = Field(default_factory=list, description="""connects an association to qualifiers that modify or qualify the meaning of that association""") @@ -6779,8 +6909,9 @@ class GeneHasVariantThatContributesToDiseaseAssociation(GeneToDiseaseAssociation has_total: Optional[int] = Field(None, description="""total number of things in a particular reference set""") has_quotient: Optional[float] = Field(None) has_percentage: Optional[float] = Field(None, description="""equivalent to has quotient multiplied by 100""") - severity_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how severe the phenotype is in the subject""") - onset_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state when the phenotype appears is in the subject""") + subject_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement).""") + object_aspect_qualifier: Optional[str] = Field(None, description="""Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement).""") + qualified_predicate: Optional[str] = Field(None, description="""Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading.""") frequency_qualifier: Optional[str] = Field(None, description="""a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject""") @@ -6910,7 +7041,9 @@ class MacromolecularMachineToEntityAssociationMixin(ConfiguredBaseModel): """ an association which has a macromolecular machine mixin as a subject """ - None + subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class MacromolecularMachineToMolecularActivityAssociation(MacromolecularMachineToEntityAssociationMixin, FunctionalAssociation): @@ -7480,7 +7613,7 @@ class ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation(Association): """ A regulatory relationship between two genes """ - object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None) + object_direction_qualifier: Optional[DirectionQualifierEnum] = Field(None, description="""Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement).""") subject: str = Field(..., description="""connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") predicate: str = Field(..., description="""the direction is always from regulator to regulated""") object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") @@ -7639,7 +7772,9 @@ class OrganismTaxonToEntityAssociation(ConfiguredBaseModel): """ An association between an organism taxon and another entity """ - None + subject: str = Field(..., description="""organism taxon that is the subject of the association""") + predicate: str = Field(..., description="""A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.""") + object: str = Field(..., description="""connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.""") class OrganismTaxonToOrganismTaxonAssociation(OrganismTaxonToEntityAssociation, Association): diff --git a/src/biolink_model/scripts/classprefixes.py b/src/biolink_model/scripts/classprefixes.py index 2145aab22..8312074e5 100644 --- a/src/biolink_model/scripts/classprefixes.py +++ b/src/biolink_model/scripts/classprefixes.py @@ -1,5 +1,5 @@ # Auto generated from class_prefixes.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-01-05T20:29:34 +# Generation date: 2024-01-09T01:14:10 # Schema: BiolinkClassPrefixes # # id: biolink-model-class-prefixes