forked from donny681/ESP32_CAMERA_QR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.c
800 lines (732 loc) · 23.2 KB
/
camera.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
/*
* Portions of this file come from OpenMV project (see sensor_* functions in the end of file)
* Here is the copyright for these parts:
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <[email protected]>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
*
* Rest of the functions are licensed under Apache license as found below:
*/
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "time.h"
#include "sys/time.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "rom/lldesc.h"
#include "soc/soc.h"
#include "soc/gpio_sig_map.h"
#include "soc/i2s_reg.h"
#include "soc/i2s_struct.h"
#include "soc/io_mux_reg.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "sensor.h"
#include "sccb.h"
#include "wiring.h"
#include "camera.h"
#include "camera_common.h"
#include "xclk.h"
#include "twi.h"
#if CONFIG_OV2640_SUPPORT
#include "ov2640.h"
#endif
#if CONFIG_OV7725_SUPPORT
#include "ov7725.h"
#endif
#define ENABLE_TEST_PATTERN CONFIG_ENABLE_TEST_PATTERN
#define REG_PID 0x0A
#define REG_VER 0x0B
#define REG_MIDH 0x1C
#define REG_MIDL 0x1D
static const char* TAG = "camera";
camera_state_t* s_state = NULL;
const int resolution[][2] = { { 40, 30 }, /* 40x30 */
{ 64, 32 }, /* 64x32 */
{ 64, 64 }, /* 64x64 */
{ 88, 72 }, /* QQCIF */
{ 160, 120 }, /* QQVGA */
{ 128, 160 }, /* QQVGA2*/
{ 176, 144 }, /* QCIF */
{ 240, 160 }, /* HQVGA */
{ 320, 240 }, /* QVGA */
{ 352, 288 }, /* CIF */
{ 640, 480 }, /* VGA */
{ 800, 600 }, /* SVGA */
{ 1280, 1024 }, /* SXGA */
{ 1600, 1200 }, /* UXGA */
};
static void i2s_init();
static void i2s_run();
static void IRAM_ATTR gpio_isr(void* arg);
static void IRAM_ATTR i2s_isr(void* arg);
static esp_err_t dma_desc_init();
static void dma_desc_deinit();
static void dma_filter_task(void *pvParameters);
static void dma_filter_grayscale(const dma_elem_t* src, lldesc_t* dma_desc,
uint8_t* dst);
static void dma_filter_grayscale_highspeed(const dma_elem_t* src,
lldesc_t* dma_desc, uint8_t* dst);
static void dma_filter_jpeg(const dma_elem_t* src, lldesc_t* dma_desc,
uint8_t* dst);
static void dma_filter_rgb565(const dma_elem_t* src, lldesc_t* dma_desc,
uint8_t* dst);
static void i2s_stop();
static bool is_hs_mode() {
return s_state->config.xclk_freq_hz > 10000000;
}
static size_t i2s_bytes_per_sample(i2s_sampling_mode_t mode) {
switch (mode) {
case SM_0A00_0B00:
return 4;
case SM_0A0B_0B0C:
return 4;
case SM_0A0B_0C0D:
return 2;
default:
assert(0 && "invalid sampling mode");
return 0;
}
}
esp_err_t camera_probe(const camera_config_t* config,
camera_model_t* out_camera_model) {
if (s_state != NULL) {
return ESP_ERR_INVALID_STATE;
}
s_state = (camera_state_t*) calloc(sizeof(*s_state), 1);
if (!s_state) {
return ESP_ERR_NO_MEM;
}
ESP_LOGD(TAG, "Enabling XCLK output");
camera_enable_out_clock(config);
ESP_LOGD(TAG, "Initializing SSCB");
SCCB_Init(config->pin_sscb_sda, config->pin_sscb_scl);
ESP_LOGD(TAG, "Resetting camera");
gpio_config_t conf = { 0 };
conf.pin_bit_mask = 1LL << config->pin_reset;
conf.mode = GPIO_MODE_OUTPUT;
gpio_config(&conf);
gpio_set_level(config->pin_reset, 1);
delay(3000);
gpio_set_level(config->pin_reset, 0);
delay(1000);
#if CONFIG_OV2640_SUPPORT
uint8_t buf[] = {0xff, 0x01};
twi_writeTo(0x30, buf, 2, true);
#endif
ESP_LOGD(TAG, "Searching for camera address");
/* Probe the sensor */
delay(10);
uint8_t slv_addr = SCCB_Probe();
if (slv_addr == 0) {
*out_camera_model = CAMERA_NONE;
return ESP_ERR_CAMERA_NOT_DETECTED;
}
s_state->sensor.slv_addr = slv_addr;
ESP_LOGD(TAG, "Detected camera at address=0x%02x", slv_addr);
sensor_id_t* id = &s_state->sensor.id;
id->PID = SCCB_Read(slv_addr, REG_PID);
id->VER = SCCB_Read(slv_addr, REG_VER);
id->MIDL = SCCB_Read(slv_addr, REG_MIDL);
id->MIDH = SCCB_Read(slv_addr, REG_MIDH);
delay(10);
ESP_LOGD(TAG, "Camera PID=0x%02x VER=0x%02x MIDL=0x%02x MIDH=0x%02x",
id->PID, id->VER, id->MIDH, id->MIDL);
switch (id->PID) {
#if CONFIG_OV2640_SUPPORT
case OV2640_PID:
*out_camera_model = CAMERA_OV2640;
ov2640_init(&s_state->sensor);
break;
#endif
#if CONFIG_OV7725_SUPPORT
case OV7725_PID:
*out_camera_model = CAMERA_OV7725;
ov7725_init(&s_state->sensor);
break;
#endif
default:
id->PID = 0;
*out_camera_model = CAMERA_UNKNOWN;
ESP_LOGD(TAG, "Detected camera not supported.")
;
return ESP_ERR_CAMERA_NOT_SUPPORTED;
}
ESP_LOGD(TAG, "Doing SW reset of sensor");
s_state->sensor.reset(&s_state->sensor);
return ESP_OK;
}
esp_err_t camera_init(const camera_config_t* config) {
if (!s_state) {
return ESP_ERR_INVALID_STATE;
}
if (s_state->sensor.id.PID == 0) {
return ESP_ERR_CAMERA_NOT_SUPPORTED;
}
memcpy(&s_state->config, config, sizeof(*config));
esp_err_t err = ESP_OK;
framesize_t frame_size = (framesize_t) config->frame_size;
pixformat_t pix_format = (pixformat_t) config->pixel_format;
s_state->width = resolution[frame_size][0];
s_state->height = resolution[frame_size][1];
s_state->sensor.set_pixformat(&s_state->sensor, pix_format);
ESP_LOGD(TAG, "Setting frame size to %dx%d", s_state->width,
s_state->height);
if (s_state->sensor.set_framesize(&s_state->sensor, frame_size) != 0) {
ESP_LOGE(TAG, "Failed to set frame size");
err = ESP_ERR_CAMERA_FAILED_TO_SET_FRAME_SIZE;
goto fail;
}
s_state->sensor.set_pixformat(&s_state->sensor, pix_format);
#if ENABLE_TEST_PATTERN
/* Test pattern may get handy
if you are unable to get the live image right.
Once test pattern is enable, sensor will output
vertical shaded bars instead of live image.
*/
s_state->sensor.set_colorbar(&s_state->sensor, 1);
ESP_LOGD(TAG, "Test pattern enabled");
#endif
if (pix_format == PIXFORMAT_GRAYSCALE) {
// if (s_state->sensor.id.PID != OV7725_PID) {
// ESP_LOGE(TAG, "Grayscale format is only supported for ov7225");
// err = ESP_ERR_NOT_SUPPORTED;
// goto fail;
// }
s_state->fb_size = s_state->width * s_state->height;
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A0B_0B0C;
s_state->dma_filter = &dma_filter_grayscale_highspeed;
} else {
s_state->sampling_mode = SM_0A0B_0C0D;
s_state->dma_filter = &dma_filter_grayscale;
}
s_state->in_bytes_per_pixel = 2; // camera sends YUYV
s_state->fb_bytes_per_pixel = 1; // frame buffer stores Y8
} else if (pix_format == PIXFORMAT_RGB565) {
// if (s_state->sensor.id.PID != OV7725_PID) {
// ESP_LOGE(TAG, "RGB565 format is only supported for ov7225");
// err = ESP_ERR_NOT_SUPPORTED;
// goto fail;
// }
s_state->fb_size = s_state->width * s_state->height * 3;
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A0B_0B0C;
} else {
s_state->sampling_mode = SM_0A00_0B00;
}
s_state->in_bytes_per_pixel = 2; // camera sends RGB565 (2 bytes)
s_state->fb_bytes_per_pixel = 3; // frame buffer stores RGB888
s_state->dma_filter = &dma_filter_rgb565;
} else if (pix_format == PIXFORMAT_JPEG) {
if (s_state->sensor.id.PID != OV2640_PID) {
ESP_LOGE(TAG, "JPEG format is only supported for ov2640");
err = ESP_ERR_NOT_SUPPORTED;
goto fail;
}
int qp = config->jpeg_quality;
int compression_ratio_bound;
if (qp >= 30) {
compression_ratio_bound = 5;
} else if (qp >= 10) {
compression_ratio_bound = 10;
} else {
compression_ratio_bound = 20;
}
(*s_state->sensor.set_quality)(&s_state->sensor, qp);
size_t equiv_line_count = s_state->height / compression_ratio_bound;
s_state->fb_size = s_state->width * equiv_line_count * 2 /* bpp */;
s_state->dma_filter = &dma_filter_jpeg;
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A0B_0B0C;
} else {
s_state->sampling_mode = SM_0A00_0B00;
}
s_state->in_bytes_per_pixel = 2;
s_state->fb_bytes_per_pixel = 2;
} else {
ESP_LOGE(TAG, "Requested format is not supported");
err = ESP_ERR_NOT_SUPPORTED;
goto fail;
}
ESP_LOGD(TAG,
"in_bpp: %d, fb_bpp: %d, fb_size: %d, mode: %d, width: %d height: %d",
s_state->in_bytes_per_pixel, s_state->fb_bytes_per_pixel,
s_state->fb_size, s_state->sampling_mode, s_state->width,
s_state->height);
ESP_LOGD(TAG, "Allocating frame buffer (%d bytes)", s_state->fb_size);
s_state->fb = (uint8_t*) calloc(s_state->fb_size, 1);
if (s_state->fb == NULL) {
ESP_LOGE(TAG, "Failed to allocate frame buffer");
err = ESP_ERR_NO_MEM;
goto fail;
}
ESP_LOGD(TAG, "Initializing I2S and DMA");
i2s_init();
err = dma_desc_init();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to initialize I2S and DMA");
goto fail;
}
s_state->data_ready = xQueueCreate(16, sizeof(size_t));
s_state->frame_ready = xSemaphoreCreateBinary();
if (s_state->data_ready == NULL || s_state->frame_ready == NULL) {
ESP_LOGE(TAG, "Failed to create semaphores");
err = ESP_ERR_NO_MEM;
goto fail;
}
if (!xTaskCreatePinnedToCore(&dma_filter_task, "dma_filter", 4096, NULL, 10,
&s_state->dma_filter_task, 1)) {
ESP_LOGE(TAG, "Failed to create DMA filter task");
err = ESP_ERR_NO_MEM;
goto fail;
}
ESP_LOGD(TAG, "Initializing GPIO interrupts");
gpio_set_intr_type(s_state->config.pin_vsync, GPIO_INTR_NEGEDGE);
gpio_intr_enable(s_state->config.pin_vsync);
err = gpio_isr_register(&gpio_isr, (void*) TAG,
ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
&s_state->vsync_intr_handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "gpio_isr_register failed (%x)", err);
goto fail;
}
// skip at least one frame after changing camera settings
while (gpio_get_level(s_state->config.pin_vsync) == 0) {
;
}
while (gpio_get_level(s_state->config.pin_vsync) != 0) {
;
}
while (gpio_get_level(s_state->config.pin_vsync) == 0) {
;
}
s_state->frame_count = 0;
ESP_LOGD(TAG, "Init done");
return ESP_OK;
fail: camera_deinit();
return err;
}
esp_err_t camera_deinit() {
if (s_state == NULL) {
return ESP_ERR_INVALID_STATE;
}
if (s_state->dma_filter_task) {
vTaskDelete(s_state->dma_filter_task);
}
if (s_state->data_ready) {
vQueueDelete(s_state->data_ready);
}
if (s_state->frame_ready) {
vSemaphoreDelete(s_state->frame_ready);
}
if (s_state->vsync_intr_handle) {
esp_intr_disable(s_state->vsync_intr_handle);
esp_intr_free(s_state->vsync_intr_handle);
}
if (s_state->i2s_intr_handle) {
esp_intr_disable(s_state->i2s_intr_handle);
esp_intr_free(s_state->i2s_intr_handle);
}
dma_desc_deinit();
free(s_state->fb);
free(s_state);
s_state = NULL;
camera_disable_out_clock();
periph_module_disable(PERIPH_I2S0_MODULE);
return ESP_OK;
}
uint8_t* camera_get_fb() {
if (s_state == NULL) {
return NULL;
}
return s_state->fb;
}
int camera_get_fb_width() {
if (s_state == NULL) {
return 0;
}
return s_state->width;
}
int camera_get_fb_height() {
if (s_state == NULL) {
return 0;
}
return s_state->height;
}
size_t camera_get_data_size() {
if (s_state == NULL) {
return 0;
}
return s_state->data_size;
}
esp_err_t camera_run() {
if (s_state == NULL) {
return ESP_ERR_INVALID_STATE;
}
struct timeval tv_start;
gettimeofday(&tv_start, NULL);
#ifndef _NDEBUG
memset(s_state->fb, 0, s_state->fb_size);
#endif // _NDEBUG
i2s_run();
ESP_LOGD(TAG, "Waiting for frame");
xSemaphoreTake(s_state->frame_ready, portMAX_DELAY);
struct timeval tv_end;
gettimeofday(&tv_end, NULL);
int time_ms = (tv_end.tv_sec - tv_start.tv_sec) * 1000
+ (tv_end.tv_usec - tv_start.tv_usec) / 1000;
ESP_LOGI(TAG, "Frame %d done in %d ms", s_state->frame_count, time_ms);
s_state->frame_count++;
return ESP_OK;
}
static esp_err_t dma_desc_init() {
assert(s_state->width % 4 == 0);
size_t line_size = s_state->width * s_state->in_bytes_per_pixel
* i2s_bytes_per_sample(s_state->sampling_mode);
ESP_LOGD(TAG, "Line width (for DMA): %d bytes", line_size);
size_t dma_per_line = 1;
size_t buf_size = line_size;
while (buf_size >= 4096) {
buf_size /= 2;
dma_per_line *= 2;
}
size_t dma_desc_count = dma_per_line * 4;
s_state->dma_buf_width = line_size;
s_state->dma_per_line = dma_per_line;
s_state->dma_desc_count = dma_desc_count;
ESP_LOGD(TAG, "DMA buffer size: %d, DMA buffers per line: %d", buf_size,
dma_per_line);
ESP_LOGD(TAG, "DMA buffer count: %d", dma_desc_count);
s_state->dma_buf = (dma_elem_t**) malloc(
sizeof(dma_elem_t*) * dma_desc_count);
if (s_state->dma_buf == NULL) {
return ESP_ERR_NO_MEM;
}
s_state->dma_desc = (lldesc_t*) malloc(sizeof(lldesc_t) * dma_desc_count);
if (s_state->dma_desc == NULL) {
return ESP_ERR_NO_MEM;
}
size_t dma_sample_count = 0;
for (int i = 0; i < dma_desc_count; ++i) {
ESP_LOGD(TAG, "Allocating DMA buffer #%d, size=%d", i, buf_size);
dma_elem_t* buf = (dma_elem_t*) malloc(buf_size);
if (buf == NULL) {
return ESP_ERR_NO_MEM;
}
s_state->dma_buf[i] = buf;
ESP_LOGV(TAG, "dma_buf[%d]=%p", i, buf);
lldesc_t* pd = &s_state->dma_desc[i];
pd->length = buf_size;
if (s_state->sampling_mode == SM_0A0B_0B0C
&& (i + 1) % dma_per_line == 0) {
pd->length -= 4;
}
dma_sample_count += pd->length / 4;
pd->size = pd->length;
pd->owner = 1;
pd->sosf = 1;
pd->buf = (uint8_t*) buf;
pd->offset = 0;
pd->empty = 0;
pd->eof = 1;
pd->qe.stqe_next = &s_state->dma_desc[(i + 1) % dma_desc_count];
}
s_state->dma_done = false;
s_state->dma_sample_count = dma_sample_count;
return ESP_OK;
}
static void dma_desc_deinit() {
if (s_state->dma_buf) {
for (int i = 0; i < s_state->dma_desc_count; ++i) {
free(s_state->dma_buf[i]);
}
}
free(s_state->dma_buf);
free(s_state->dma_desc);
}
static inline void i2s_conf_reset() {
const uint32_t lc_conf_reset_flags = I2S_IN_RST_M | I2S_AHBM_RST_M
| I2S_AHBM_FIFO_RST_M;
I2S0.lc_conf.val |= lc_conf_reset_flags;
I2S0.lc_conf.val &= ~lc_conf_reset_flags;
const uint32_t conf_reset_flags = I2S_RX_RESET_M | I2S_RX_FIFO_RESET_M
| I2S_TX_RESET_M | I2S_TX_FIFO_RESET_M;
I2S0.conf.val |= conf_reset_flags;
I2S0.conf.val &= ~conf_reset_flags;
while (I2S0.state.rx_fifo_reset_back) {
;
}
}
static void i2s_init() {
camera_config_t* config = &s_state->config;
// Configure input GPIOs
gpio_num_t pins[] = { config->pin_d7, config->pin_d6, config->pin_d5,
config->pin_d4, config->pin_d3, config->pin_d2, config->pin_d1,
config->pin_d0, config->pin_vsync, config->pin_href,
config->pin_pclk };
gpio_config_t conf = { .mode = GPIO_MODE_INPUT, .pull_up_en =
GPIO_PULLUP_ENABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE };
for (int i = 0; i < sizeof(pins) / sizeof(gpio_num_t); ++i) {
conf.pin_bit_mask = 1LL << pins[i];
gpio_config(&conf);
}
// Route input GPIOs to I2S peripheral using GPIO matrix
gpio_matrix_in(config->pin_d0, I2S0I_DATA_IN0_IDX, false);
gpio_matrix_in(config->pin_d1, I2S0I_DATA_IN1_IDX, false);
gpio_matrix_in(config->pin_d2, I2S0I_DATA_IN2_IDX, false);
gpio_matrix_in(config->pin_d3, I2S0I_DATA_IN3_IDX, false);
gpio_matrix_in(config->pin_d4, I2S0I_DATA_IN4_IDX, false);
gpio_matrix_in(config->pin_d5, I2S0I_DATA_IN5_IDX, false);
gpio_matrix_in(config->pin_d6, I2S0I_DATA_IN6_IDX, false);
gpio_matrix_in(config->pin_d7, I2S0I_DATA_IN7_IDX, false);
gpio_matrix_in(config->pin_vsync, I2S0I_V_SYNC_IDX, false);
gpio_matrix_in(0x38, I2S0I_H_SYNC_IDX, false);
gpio_matrix_in(config->pin_href, I2S0I_H_ENABLE_IDX, false);
gpio_matrix_in(config->pin_pclk, I2S0I_WS_IN_IDX, false);
// Enable and configure I2S peripheral
periph_module_enable(PERIPH_I2S0_MODULE);
// Toggle some reset bits in LC_CONF register
// Toggle some reset bits in CONF register
i2s_conf_reset();
// Enable slave mode (sampling clock is external)
I2S0.conf.rx_slave_mod = 1;
// Enable parallel mode
I2S0.conf2.lcd_en = 1;
// Use HSYNC/VSYNC/HREF to control sampling
I2S0.conf2.camera_en = 1;
// Configure clock divider
I2S0.clkm_conf.clkm_div_a = 1;
I2S0.clkm_conf.clkm_div_b = 0;
I2S0.clkm_conf.clkm_div_num = 2;
// FIFO will sink data to DMA
I2S0.fifo_conf.dscr_en = 1;
// FIFO configuration
I2S0.fifo_conf.rx_fifo_mod = s_state->sampling_mode;
I2S0.fifo_conf.rx_fifo_mod_force_en = 1;
I2S0.conf_chan.rx_chan_mod = 1;
// Clear flags which are used in I2S serial mode
I2S0.sample_rate_conf.rx_bits_mod = 0;
I2S0.conf.rx_right_first = 0;
I2S0.conf.rx_msb_right = 0;
I2S0.conf.rx_msb_shift = 0;
I2S0.conf.rx_mono = 0;
I2S0.conf.rx_short_sync = 0;
I2S0.timing.val = 0;
// Allocate I2S interrupt, keep it disabled
esp_intr_alloc(ETS_I2S0_INTR_SOURCE,
ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_LEVEL1 | ESP_INTR_FLAG_IRAM,
&i2s_isr, NULL, &s_state->i2s_intr_handle);
}
static void i2s_stop() {
esp_intr_disable(s_state->i2s_intr_handle);
esp_intr_disable(s_state->vsync_intr_handle);
i2s_conf_reset();
I2S0.conf.rx_start = 0;
size_t val = SIZE_MAX;
BaseType_t higher_priority_task_woken;
xQueueSendFromISR(s_state->data_ready, &val, &higher_priority_task_woken);
}
static void i2s_run() {
#ifndef _NDEBUG
for (int i = 0; i < s_state->dma_desc_count; ++i) {
lldesc_t* d = &s_state->dma_desc[i];
ESP_LOGV(TAG, "DMA desc %2d: %u %u %u %u %u %u %p %p", i, d->length,
d->size, d->offset, d->eof, d->sosf, d->owner, d->buf,
d->qe.stqe_next);
memset(s_state->dma_buf[i], 0, d->length);
}
#endif
// wait for vsync
ESP_LOGD(TAG, "Waiting for positive edge on VSYNC");
while (gpio_get_level(s_state->config.pin_vsync) == 0) {
;
}
while (gpio_get_level(s_state->config.pin_vsync) != 0) {
;
}
ESP_LOGD(TAG, "Got VSYNC");
s_state->dma_done = false;
s_state->dma_desc_cur = 0;
s_state->dma_received_count = 0;
s_state->dma_filtered_count = 0;
esp_intr_disable(s_state->i2s_intr_handle);
i2s_conf_reset();
I2S0.rx_eof_num = s_state->dma_sample_count;
I2S0.in_link.addr = (uint32_t) &s_state->dma_desc[0];
I2S0.in_link.start = 1;
I2S0.int_clr.val = I2S0.int_raw.val;
I2S0.int_ena.val = 0;
I2S0.int_ena.in_done = 1;
esp_intr_enable(s_state->i2s_intr_handle);
if (s_state->config.pixel_format == CAMERA_PF_JPEG) {
esp_intr_enable(s_state->vsync_intr_handle);
}
I2S0.conf.rx_start = 1;
}
static void IRAM_ATTR signal_dma_buf_received(bool* need_yield) {
size_t dma_desc_filled = s_state->dma_desc_cur;
s_state->dma_desc_cur = (dma_desc_filled + 1) % s_state->dma_desc_count;
s_state->dma_received_count++;
BaseType_t higher_priority_task_woken;
BaseType_t ret = xQueueSendFromISR(s_state->data_ready, &dma_desc_filled,
&higher_priority_task_woken);
if (ret != pdTRUE) {
ESP_EARLY_LOGW(TAG, "queue send failed (%d), dma_received_count=%d",
ret, s_state->dma_received_count);
}
*need_yield = (ret == pdTRUE && higher_priority_task_woken == pdTRUE);
}
static void IRAM_ATTR i2s_isr(void* arg) {
I2S0.int_clr.val = I2S0.int_raw.val;
bool need_yield;
signal_dma_buf_received(&need_yield);
ESP_EARLY_LOGV(TAG, "isr, cnt=%d", s_state->dma_received_count);
if (s_state->dma_received_count
== s_state->height * s_state->dma_per_line) {
i2s_stop();
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
static void IRAM_ATTR gpio_isr(void* arg) {
uint32_t isr = GPIO.status;
if (isr == 0)
ESP_EARLY_LOGE(TAG, "isr=%d", isr);
GPIO.status1_w1tc.val = GPIO.status1.val;
GPIO.status_w1tc = GPIO.status;
bool need_yield = false;
ESP_EARLY_LOGV(TAG, "gpio isr, cnt=%d", s_state->dma_received_count);
if (gpio_get_level(s_state->config.pin_vsync) == 0
&& s_state->dma_received_count > 0 && !s_state->dma_done) {
signal_dma_buf_received(&need_yield);
i2s_stop();
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
static size_t get_fb_pos() {
return s_state->dma_filtered_count * s_state->width
* s_state->fb_bytes_per_pixel / s_state->dma_per_line;
}
static void IRAM_ATTR dma_filter_task(void *pvParameters) {
while (true) {
size_t buf_idx;
xQueueReceive(s_state->data_ready, &buf_idx, portMAX_DELAY);
if (buf_idx == SIZE_MAX) {
s_state->data_size = get_fb_pos();
xSemaphoreGive(s_state->frame_ready);
continue;
}
uint8_t* pfb = s_state->fb + get_fb_pos();
const dma_elem_t* buf = s_state->dma_buf[buf_idx];
lldesc_t* desc = &s_state->dma_desc[buf_idx];
ESP_LOGV(TAG, "dma_flt: pos=%d ", get_fb_pos());
(*s_state->dma_filter)(buf, desc, pfb);
s_state->dma_filtered_count++;
ESP_LOGV(TAG, "dma_flt: flt_count=%d ", s_state->dma_filtered_count);
}
}
static void IRAM_ATTR dma_filter_grayscale(const dma_elem_t* src,
lldesc_t* dma_desc, uint8_t* dst) {
assert(s_state->sampling_mode == SM_0A0B_0C0D);
size_t end = dma_desc->length / sizeof(dma_elem_t) / 4;
for (size_t i = 0; i < end; ++i) {
// manually unrolling 4 iterations of the loop here
dst[0] = src[0].sample1;
dst[1] = src[1].sample1;
dst[2] = src[2].sample1;
dst[3] = src[3].sample1;
src += 4;
dst += 4;
}
}
static void IRAM_ATTR dma_filter_grayscale_highspeed(const dma_elem_t* src,
lldesc_t* dma_desc, uint8_t* dst) {
assert(s_state->sampling_mode == SM_0A0B_0B0C);
size_t end = dma_desc->length / sizeof(dma_elem_t) / 8;
for (size_t i = 0; i < end; ++i) {
// manually unrolling 4 iterations of the loop here
dst[0] = src[0].sample1;
dst[1] = src[2].sample1;
dst[2] = src[4].sample1;
dst[3] = src[6].sample1;
src += 8;
dst += 4;
}
// the final sample of a line in SM_0A0B_0B0C sampling mode needs special handling
if ((dma_desc->length & 0x7) != 0) {
dst[0] = src[0].sample1;
dst[1] = src[2].sample1;
}
}
static void IRAM_ATTR dma_filter_jpeg(const dma_elem_t* src, lldesc_t* dma_desc,
uint8_t* dst) {
assert(
s_state->sampling_mode == SM_0A0B_0B0C
|| s_state->sampling_mode == SM_0A00_0B00);
size_t end = dma_desc->length / sizeof(dma_elem_t) / 4;
// manually unrolling 4 iterations of the loop here
for (size_t i = 0; i < end; ++i) {
dst[0] = src[0].sample1;
dst[1] = src[1].sample1;
dst[2] = src[2].sample1;
dst[3] = src[3].sample1;
src += 4;
dst += 4;
}
// the final sample of a line in SM_0A0B_0B0C sampling mode needs special handling
if ((dma_desc->length & 0x7) != 0) {
dst[0] = src[0].sample1;
dst[1] = src[1].sample1;
dst[2] = src[2].sample1;
dst[3] = src[2].sample2;
}
}
static inline void rgb565_to_888(uint8_t in1, uint8_t in2, uint8_t* dst) {
dst[0] = (in2 & 0b00011111) << 3; // blue
dst[1] = ((in1 & 0b111) << 5) | ((in2 & 0b11100000 >> 5)); // green
dst[2] = in1 & 0b11111000; // red
}
static void IRAM_ATTR dma_filter_rgb565(const dma_elem_t* src,
lldesc_t* dma_desc, uint8_t* dst) {
assert(
s_state->sampling_mode == SM_0A0B_0B0C
|| s_state->sampling_mode == SM_0A00_0B00);
const int unroll = 2; // manually unrolling 2 iterations of the loop
const int samples_per_pixel = 2;
const int bytes_per_pixel = 3;
size_t end = dma_desc->length / sizeof(dma_elem_t) / unroll
/ samples_per_pixel;
for (size_t i = 0; i < end; ++i) {
rgb565_to_888(src[0].sample1, src[1].sample1, &dst[0]);
rgb565_to_888(src[2].sample1, src[3].sample1, &dst[3]);
dst += bytes_per_pixel * unroll;
src += samples_per_pixel * unroll;
}
if ((dma_desc->length & 0x7) != 0) {
rgb565_to_888(src[0].sample1, src[1].sample1, &dst[0]);
rgb565_to_888(src[2].sample1, src[2].sample2, &dst[3]);
}
}