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Abstract

The next locations of mobile users attracts the consideration of many researchers and telecommunica-
tions providers, including Swisscom. Having knowledge about customers’ locations can help Swisscom
in providing better services such as increasing media streaming experience, network congestion detect-
ing... In order to forecast users’ locations in the near future, we design algorithms in two approaches
to build models from overlarge datasets : tree-based approach and trajectory-based approach. Both
solutions provide the acceptable results with the accuracy around 80% and 65% respectively. Further-
more, the second approach also supports adjusting models incrementally time to time.



Introduction

The context of this project lies in mobile network service provisioning, and it is related to the quest
for better customer experience when offering mobile network services to customers.

In the mobile network we consider in this work, some critical components – labeled enforcement
points (EP) – execute traffic engineering tasks to decide, for example, given the current state of
the mobile network for a particular user, which media encoding to use to deliver data to a mobile
terminal. Today, EPs may behave similarly to an admission control mechanism and they accept all
traffic or none.

The endeavor of this work is to inject additional information in EPs, such that better decisions
(and not only all-or-nothing) could be taken. Specifically, we consider radio access network (RAN)
conditions, which include: congestion in the RAN, when EP should implement their decisions,
knowledge about the serving cell (SC) for each customer, ...

Now, the knowledge about the serving cell for each user is hard to obtain in real time, which may limit
the usefulness of such information to EP. In particular, due to the current state of the technology
used to operate the mobile network, it is possible to measure the serving cell for a user only with
a non-negligible delay (in the order of tens of minutes, e.g. 15 minutes). Given such limitation,
the customer location inference problem can be tackled with simple heuristics, such as bounding
the region surrounding critical EPs, where the bounding box should be sufficiently loose to allow
recovering the delay in obtaining the SC information. These heuristic may work in practice, but
their merit still need to be assessed. Moreover, the heuristic approach is non-scalable, and can only
be applied to a selected subset of “hot” EPs.

As such, in this work we tackle the problem of providing estimates of customer location, in the sense
of trying to estimate (or predict), at a given point in time, which users will be served by which SC.
Based on delayed (and possibly stale) measurement data, combined with historical data of customer
location, we want to produce accurate estimates of customers’ SCs.

We believe addressing this problem to be feasible based on prior work such as [16], in which Barabasi
et. al. state that “human trajectories show a high degree of temporal and spatial regularity, each
individual being characterized by a time-independent characteristic travel distance and a significant
probability to return to a few highly frequented locations” and “93% potential predictability in user
mobility across the whole user base”. Therefore, it’s possible to build a model to predict the next
location of user.

There are two system architectures that we can consider to build model: Batch processing and real
time system [15]. In our work, currently, we only focus on batch processing.
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In the batch processing architecture, by using machine learning algorithms, historical data is used
to train a model, which will predict the next location for users. Note that, in general, a model has a
lifetime, or “age”. When the model is stale, historical data combined with new data is used to train
a new, updated model.

Another problem we should consider is, what is the scope of models. In literature, there are two
kinds of models: Individual models and Global models. Individual models are the trained models for
each user, and be used to predict the next location of this user only. In the contrast, global models
are built and used to make predictions for all users. The former is more widely used. However, in
this project, we will build and evaluate both model scopes.

In this project, we use two approaches to train models : tree-based and trajectory-based approaches.
As the former’s name, we use Decision Tree and Random Forest to predict the target feature: Next
location. In trajectory-based approach, we try to identify and group the similar daily mobility paths
of users, generate models and use them to make predictions. Decision Tree and Random Forest will
be used as the baseline to compare the performance with our new algorithm in trajectory-based
approach. The implementations of both approaches is written in SPARK - a very powerful scalable
framework - which be introduced in section 1.2.

The rest of this document is organized as follows: Chapter 2 is related works and some background
knowledge will be used in this project. In chapter 3, we introduce and describe in detail the data
we use to build our statistical models, and to validate our algorithms. Chapter 4 and 5 talk about
tree-based approach and trajectory-based approach. Finally, we come up with the conclusion in
chapter 5.

2



Chapter 1

Background and related works

1.1 Related works

Our goal in this project is designing scalable algorithms to build models from very huge data from
SWISSCOM, and use them to predict the next location of users. Therefore, we focus on two families
of related works: the studies of location inference problems and scalable machine learning algorithms.

1.1.1 State of the art in location inherence

We reviewed a number of related works that address similar (or sometimes, the same) problem we
focus on in our project. Note that almost all papers are the result of research efforts in addressing
machine learning challenges in 2012 from NOKIA and ORANGE. Unfortunately, the original data
used by the research papers below are no longer available.

Tran et. al. [21] predicted the next place which user will go to in the future using an approach based
on user-specific decision trees learned from each user’s history.They discrete time series data into
10-minute windows and then label some special places: home , office (by using some properties),
and use them to detect when the user changes his habit (in order to update our model). Additions,
they used the Holidays Detection mechanism to aggregate the data. After that, Decision Tree
algorithms, i.e. J48 - an implementation of the C4.5 algorithms to build the tree model for each
user and use these models for prediction later on. The used features are: “PlaceID”, “IsHoliday”,
“IsWeekend”, “Weekday”, “LeavingTime”, “Duration”. Feature “IsHoliday” will be determined based
on the holiday calender type of each user, which will be chosen by cross-validation method. They
also used the information of call logs, sms logs, user’s calendar and some other parameters to adjust
the decision. This study used many mechanisms, such as Holiday Detector, Parameter Optimizer,
Location Changing detection... to increase the performance, The accuracy of this method is about
61.11%. If the users have simple movement patterns, the accuracy can reach more than 80%.
However, they lack the mechanism to auto update models when having the new data, and cannot
make prediction for some some who didn’t participate in the training before.

In 2013, João Bártolo Gomes et. al. [6] focus on the predicting the next location problem of a
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mobile given data on his current location. They provide a framework which using spatial, temporal
data as well as other contextual data such as bluetooth, call/sms logs, accelerometer. Besides, this
framework is executed on the mobile device itself in order to respect the privacy of users. They use
Massive Online Analysis + Hoeffding Tree + Probabilistic model. They tried to build the model
for each user to predict the next location based on the current location only (without data about
previous locations). The raw data of each user’s location will be transformed infor semantic places
by using Four-square, Facebook and Google Latitude... to build Anytime Model, which has ability to
adapt to the new data. Accuracy Estimator - the component takes the role of comparing the anytime
model prediction and the actual location is set up to keep an estimation of the next place prediction
accuracy. The features were used in their study are temporal features (duration of the visit, the day
of week, isWeekend, period of the day, hour of the day), Phone status (general, silence, min/max of
battery level...), Phone usage (call logs, sms logs...), Environment features(accelerometer, bluetooth,
wlan, gms).The accuracy when applying their method on data from Nokia challenges is 59.6%. The
models of this approach are adaptive time to time. However But the users have to install the software
which contains the proposed framework on their phone.

Still in the Nokia Challenge “The next place prediction”, Etter et. al. addressed the problem based
on graphical models, neural networks , decision trees and some blending strategies. In there, they
listed three characteristics of the data what they think are critical to the prediction task:

• User Specificity : It is not possible to build joint models over the user population to learn from
some one to make prediction for another.

• Non-Stationarity : User can change his/her habit overtime (when moving house or office)

• Data Gaps : For some user, we have no information about them in long periods. And these
gaps are sometimes followed by change of mobility habit.

To solve the problem, they used Dynamical Bayesian Network, Artificial Neural Networks and
Gradient Boosted Decision Trees to build three different models for each user, compare them and
combine several predictors to increase the accuracy. The features were used in building model
phase are: Location, Start time of visiting (Hour, Day, Weekday), End time of visiting (Hour, Day,
Weekday), IsTrustedTransition. The average of accuracy is more than 60%.

Using another approach, J. Wang et. al. want to predict the next location of a user based only
on his trajectory [22]. They assume that user behavior exhibits strong periodic patterns. The
model for each user will be built based on Periodicity Based Model and Multi-class Classification
algorithms. The features which were used are: starting time of a visit, end time of a visit, current
location. Where the time included: day of week, hour of day, hour of week, weekend, weekday,
morning, noon, afternoon, evening, midnight. The accuracy of this approach when applying on
Nokia challenge’s data is around 55%. This approach doesn’t consider the relationship between the
next location and the previous locations and isn’t suitable with small training dataset.

1.1.2 Scalable machine learning algorithm

In 2009, Google introduced PLANET, a scalable framework for learning tree models from over large
datasets [18]. PLANET defines the tree building procedure as a series of distributed computation,
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and implements each one using the MapReduce model of distributed computation.Besides, because
tree learning is an iterative algorithm, PLANET needs to use a special program to chedules and con-
trols the entire tree induction process on distributed machines. The machine running that program
called “Controller”.In order to control and coordinate tree construction, the Controller maintains the
followings:

• ModelFile: the entire tree contructed

• MapReduceQueue (MRQ) : contains the nodes which need to be expanded but having too large
training data to fit in memory

• InMemoryQueue (IMQ) : contains the nodes which need to be expanded, and having the
training data that can fit in memory

Whenever a node is expanded to two children, each child will be appended into the MRQ or IMQ,
depends on its training data. Once PLANET checks that MRQ or IMQ is not empty and there are
enough resources, it launches a MapReduce job in a separate thread to expand the current nodes
in this queue. The memory limitations of a machine and the number of available machines on the
cluster often prevent the Controller from scheduling MapReduce jobs for all nodes on a queue at
once.

The induction procedure will stop if there is no running job and all queues are empty.

In the design of PLANET, when scheduling a set of nodes, the Controller does not determine the set
of input records require by the nodes. It simply them the whole training dataset D to every job.If
the input to the set of nodes being expanded is much smaller than D, then the Controller will send
much unnecessary input for processing.

Although Google shows that PLANET work well in practice, but it’s still closed-source and not
directly usable by the broader community. Inspired from this study, Wei Yin et. al. introduce an
open-source version of PLANET, called “OpenPlanet”, which helps building scalable regression tree
on Hadoop. (We will discuss about Hadoop in detail in section 1.2.2). The Controller runs one job
at a time to build all nodes at the same level of the regression tree.They also tuned and analyzed
the impact of parameters such as HDFS block sizes and threshold for in memory handoff on the
performance of OpenPlanet to improve the default performance.

1.2 Background

1.2.1 Map-Reduce

MapReduce is a programming model and an associated implementation for processing scalable prob-
lems accross huge datasets using a large number of computers (cluster). MapReduce can take ad-
vantage of locality if data, processing it on or near the storage assets to reduce the distance over
which must be transmitted (communication cost). By words, MapReduce helps us move the com-
putation instead of moving data. MapReduce was introduced by Google in 2004 [12]. It’s inspired
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by Map/Reduce in functional programming languages, such as LISP from 1960’s, but its purpose is
no the same as in their original form.

In perspective of programming model, a MapReduce program (also called job) is a compose of a map
function and a reduce function. The map function takes the input, transform it into intermediate
results. The reduce function performs a summary operation on these intermediate result to return
the final output.

1.2.1.1 Locical view

In logical view, a job has two main phases:

• Map phase: The master node takes the input, divides it into many smaller parts and dis-
tributes them into worker nodes. The worker nodes scan over the its input, compute the pair
of key/value pair for each piece of input in parallel and pass the answers back to its master
node.

• Reduce phase: The master node collects the intermediate result from workers, groups them
by key and dispatches each group to a worker. These workers apply a reduce function on each
group to calculate the final result in parallel.

For example, we want to calculate the frequency of each word in a huge document. In the map
function, every time we meet a word w, we emit a pair (w, 1). The input of the reduce function is a
pair of word, and the associated list of frequencies of this word.

Algorithm 1 Example of map-reduce job
function map(document)

for each word w in document do
Emit(w, 1) . key = w, value = 1

end for
end function

. The pairs are group by keys, and be the input for reduce function
function reduce(w, List_of_frequencies)

sum = 0
for each value in List_of_frequencies do

sum = sum+ value
end for
Emit(w, sum)

end function

1.2.1.2 Execution View

The map invocations are distributed across multiple machines by partitioning the input data into
a set of M pieces. This partitioning task can be done in parallel on many machines. Similarly, the
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reduce invocations are distributed by partitioning the intermediate key space into R pieces using
a hash function. The number of partitions R is decided by the user. The below figure show the
execution of a MapReduce job when running with the implementation of Google:

1. The MapReduce library firstly splits the input data into M parts and then starts many copies
of user program on a cluster of machines.

2. Among the copies, there is a special program : master. The others are workers that are
assigned work by the master. The master picks up the ide workers and assigns each one map
or reduce task in total M map tasks and R reduce tasks.

3. The workers which were assigned map tasks read the corresponding data, apply the map
function and then produce the intermediate key/value pair and store them in memory buffers.

4. The buffers are written into local disk and partitioned into R regions periodically. The infor-
mation of these regions are sent back to master who is responsible for forwarding these location
information to reducers.

5. When a reducer gets the notice from master about these locations, it reads the data from the
local disk of map workers by using remote procedure calls. After reading all intermediate data,
the reducer group them by their keys.

6. For each unique intermediate key, the reducer pass the key and the associated set of values
into the Reduce function. The ouput of Reduce function are appended to a final output file
for this reduce partition.

7. After MapReduce job completed, we have R output files, each file is produced from one reducer.

Figure 1.1 shows the workflow of a MapReduce job.

1.2.2 Hadoop

Hadoop is an open-source implementation of Google MapReduce, an Apache top-level project be-
ing built and used by a global community. The Appache Hadoop framework contains some main
components [1]:

• Hadoop Common: contains the libraries and ultilities for other modules

• Hadoop Distributed File System (HDFS): a distributed file-system that stores data on
commondity machines, provides high aggregate bandwidth across the cluster

• Hadoop MapReduce: a programming model as described above

The architecture of Hadoop is a little bit different from Google MapReduce, but the key idea is the
same.

Hadoop is used widely by many big companies, such as Yahoo, Facebook... and many organizations.

Advantages:

7
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Figure 1.1: MapReduce’s execution flow

• Simple and elegant concept

• Powerful

• Building block for other parallel programming tools: such as Pig, Hive...

• Extensible for different applications

• Good failure tolerant

Disadvantages:

• Poor support iterative algorithms

• Doesn’t support real time processing itself

1.2.3 SPARK

Like Hadoop, SPARK is an open-source framework for fast and flexible large-scale data analysis,
originally developed in the AMPLab at UC Berkeley. SPARK also was built on top of HDFS.

8



Large-scale Customer Location Inference 9

However, SPARK is not tied to the two-stage MapReduce model. It allows job to load data into
cluster’s memory and query it repeatedly, making it suited to machine learning algorithms. It also
promises increasing the performance up to 100 times faster than Hadoop for certain applications.

SPARK’s primary abstraction is a distributed collection of items called a Resilient Distributed
Dataset (RDD). RDDs can be created from HDFS files, (or other Hadoop InputFormat), or trans-
formed from other RDDs. Each RDD has transformation functions that transform itself to other
RDD, and action functions that return values, like map and reduce functions in Hadoop. RDDs
support many persistence levels of storage: Memory only, Memory and Disk and Disk only... Since
the RDD is mainly stored in memory and reduces I/O (by caching mechanism) and the complexity
of driver (it’s driver itself), it supports very well to iterative algorithms. Besides, SPARK can handle
well both batch processing and real-time processing.

Besides, SPARK support both streaming and batch processing.

Because of these advantages, we choose SPARK as a framework for scalable environment.n,

Figure 1.2: SPARK’s architecture
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Chapter 2

Data

2.1 Introduction

Beside the data from SWISSCOM, which is private, we used an additional similar dataset from a
project of MIT. In this chapter, section 2.2 introduces about these two datasets as well as describe
some tasks to analyze them.The first task is pre-processing data to make it adapt to our approaches
(section 2.3). After that, in section 2.4, we do some data analysis to retrieve the properties of data.
Finally, we discuss about the method to sample the data for our algorithms in section 2.5.

2.2 Datasets

2.2.1 Data from SWISSCOM

Each day, SWISSCOM collects terabytes data of customers behavior data contains the following
fields:

cid customer ID, anonymized version of a customer unique iden-
tifier

cell serving cell unique identifier, where actually this field con-
veys information about the sector inside a serving cell and
the bound

dt timestamp
event type events to related to signaling

An example line of such a log file is given below:

cid, cell, dt, event type

7fb514974789b80b91692f849f3c0c5,FLAH2F,2014-01-12 16:11:32.000265,12

10
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It should be noted that precise location information about SC is available through a separate
database (or dataset) which contains information about the topology of the mobile network and
its SCs. Precisely, this database provides information about the GPS location of SCs plus a lookup
service to discover neighboring SCs of that provided for a particular customer at a particular point
in time.

This means, in practice, that some relational operators akin to a JOIN will be required when working
on the full-fledged prototype, whereas for the initial study, it is possible to simplify the problem by
denormalizing the information contained into multiple tables and the log file into a larger log file,
enriched with precise location information of SCs. We shall call the latter log file, the offline log.

In the context of this project, we are interested in predicting the next Service cell ID (and eventu-
ally its coordinates) to which a user will connect to, as opposed to a precise tracking of the GPS
coordinates of a user. We will address the “next cell problem” considering a range of forecasting
scopes, from few tens of minutes to few hours in the future. An important requirement that we will
take into consideration is the time it takes to make a prediction, given a model is available.

2.2.2 Additional dataset

Due to some data availability problems, we first focused on finding publicly available data with a
“schema” similar to what we expect to have from Swisscom. Currently, we use publicly available data
collected in the Reality Mining project [13] at MIT. In the Reality Mining project, information about
device logs, Bluetooth devices in proximity, cell tower IDs, application usage and phone status were
collected from more than one hundred Nokia 6600 smart-phones via several pre-installed pieces of
developed software and a version of the Context application from University of Helsinki. This study
generated data covering over nine months, with about 500,000 hours of data on users’ locations,
communication and usage behavior. In the middle of 9-months study, the research group at MIT
conducted an online survey for users, which had to answer questions related to social relations so as
to infer also a friendship network. The subjects of the study are seventy-five students or faculty in
the MIT Media Laboratory, twenty-five incoming students at MIT Sloan Business School adjacent
to the Laboratory.

The dataset we used comes in the proprietary MATLAB’s format, and contains many features.
Below, we list a subset of these features that we deem relevant for our study:

11
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StartDay the starting day of the study duration on
users

Communication

Date The timestamp
EventId Unique event ID
ContactId The contact ID in phone’s address book

(-1 = not in address book )
Type of event Type of communication
Direction Direction of the event (“Outgoing” or “In-

comming”)
Duration Duration of the event

Tower transition Time The time when user swiched cell tower
Area.CellID Complex value XXX.YYY where XXX os

tje area ID and YYY is the cell ID

In addition, we are interested in considering additional features, such as information about the
days SMS were sent or received, number of voice calls, home id, and many more. However, this
information may not be directly available in the Swisscom dataset: for this reason, in this report
we neglect such additional features. It is important to notice that there is no available mapping
between Serving Cell IDs and their physical location. Instead, this information will be available in
the Swisscom dataset.

2.3 Data pre-processing

In order to facilitate pouring data to different processing frameworks,different algorithms..., we
transformed, filtered and saved the dataset from MATLAB format to a CSV format. The size of the
final file is 124.5 MB with more than 3 millions records (or observations) with the schema: userID,
year, month, day of month, day of week, hour of day, minute, areaCellID, AreaCellIndex.

The data is ordered by UserID and then timestamp. For instance:

UserID,Year,Month,DayOfMonth,DayOfWeek,Hour,Minute,AreaCell,AreaCellIndex

2,2005,1,26,Wed,16,42,24127.0011,35

2,2005,1,27,Thu,1,45,24127.0011,35

3,2005,1,23,Sun,2,42,24123.0011,38

The column areaCellIndex is the mapping from areaCellID value to an unique value.

2.4 Data pre-analysis

Following a similar approach to that in [14], we now proceed with an exploratory data analysis and
plot the “movement habit” of each user. As an illustrative example, Figure 2.2 and figure 2.1 depict
the location (in terms of Serving Cell ID) in different times of different days for user 93 and 65
respectively. Specifically: the x-axis is the relative day of the study; the y-axis is the hour of day.

12
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Figure 2.1: The movement pattern of user 93

Location information uses a color code, with a different color for each unique Serving Cell ID, and
with the convention of an empty line indicating that there is no information or no signal at all. For
example, Figure 2.1 indicates that user 93 has frequent movements from 9AM to 9PM in most of the
days. So, this user may be “classified” as a “regular user”. In the contrast, as Figure 2.2 indicates,
user 65 is an “irregular user”.

2.5 Data sampling methods

Next, we discuss another important step for the preparation of data in light of training a model for
the prediction task. Sampling methods amount to devise a methodology to split the dataset in a
number of parts, which will be used for the model training, and for the model testing, that is, for
assessing the prediction quality of the model.

There are many strategies to perform sampling:

Strategy 1: Given a dataset with N observations, randomly pick up samples to obtain two disjoint

13
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Figure 2.2: The movement pattern of user 65

sets: training set with pN observations, testing set with (1 − p)N observations, where p is the the
proportion of training set over total data, determined by user (0 < p < 1). This strategy is very
simple, but it has bias toward users that have more observations than others.

Strategy 2: For every user, consider every observations (ordered by timestamp already), take a subset
of such observations to use as training, and the rest for testing. E.g. userID = 60 has 100 records,
consider the first 80 records as training, and the last 20 records for testing.

The advantages of this strategy are : simple, and can adapt to algorithms that use historical infor-
mation to predict the future data. But this strategy requires more data scanning to sort data by
time and user, and still have some bias for users that do not have many observations or have many
missing values.

Strategy 3: Given a dataset with N observations, take the first pN observations for training instead
of random selection as Strategy 1, and the rest for testing (0 < p < 1). This strategy is simple and
very fast but still has the same problem like other strategies: bias problem (some users may can
have any observation, or very little).

14
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In this project, we want to use the historical information for building models, and every user should
have their observations in the training set - the factor we think that can have positive effects to the
accuracy of algorithm. Therefore, in our evaluations, we will use strategy 2 to sample the data.

15



Chapter 3

Tree-based approach : Decision Trees

3.1 Introduction

Decision trees are one of the oldest and most popular data mining models. With many advantages
such as inexpensive to construct models, extremely fast at classifying unseen records, the accuracy
is comparable to other classification techniques... decision tree is often used to address the location
inference problem.

In this chapter, we introduce about different kinds of trees and the procedures to construct them
and some techniques which help increasing the performance accuracy of models.

The main challenges when using this approach in the project is how to parallelize the tree inducting
process in the scalable environment with SPARK. We address these challenges in section 3.3.2
by introducing Labelling Tree Building algorithm to construct decision trees, and the parallel
implementation of other techniques.

The idea of our approach is very simple: we consider the next location of user as the target feature
(what we want to predict), the other information is the predictors (what we use for predict), and
using tree learning algorithms to build models. In order to use these algorithms effectively, the
domain value of the target feature must be discrete or be a number in R. It means, if locations are
represented by a service cell IDs (categorical feature), we use the classification (CART or ID3) for
building models. In contrast, if locations are constituted by GPS coordinates, we can not use tree
model for predicting these complex values (because there are no way to sum GPS coordinates or
calculate the centroid point of coordinate).

Therefore, with this approach, we only use classification tree, which we will introduce in next sections,
to forecast the next service cell id which users will connect to.
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3.2 Background

3.2.1 Preliminaries

Before going into details of decision trees, we would like to introduce some notations which will be
used in the following sections.

The training data of this approach is often in text file format. In which, each line (or called records,
observations... analogy) contains a set values of attributes.

The below are 2 lines of the dummy dataset with 3 attributes: Temperature, Humidity and Play
golf.

12, High, No
27 , High, Yes

We also used word “feature” with the same meaning as “attribute”. An attribute is called “Categori-
cal” feature if it is unordered. For example, Gender, Car Models,... In contrast, an ordered attribute
is called “Numerical” feature. For instance, Age, Salary,...

With a given data, we want to predict the value of a specific feature based on some of other features.
That feature can be called: the target feature. Its dependency features are predictors. In the above
example, the attribute “Play golf” can be the target feature. The others are predictors. Formally,
let X = X1, X2, .., Xn is the set of attributes with domain values DX1 ,DX2 , ..,DXn respectively.
Let Y is an output with domain DY . Denote D∗ = {(xi, yi)|xi ∈ DX1 ×DX2 × ..DXn}, yi ∈ DY .

IfDY is continuous, the learning problem is regression problem. IfDY is categorical, it is classification
problem.

Our goal is defining a function F : DX1 × DX2 × ..DXn → DY that best approximates the true
distribution of D∗. The tree model represents F by partitioning the data space DX1 ×DX2 × ..DXn

recursively into non-overlapping regions. The boundary of each region is represented by a predicate.
If X is categorical feature, the predicate is of the form: X < v , v ∈ DX . For example, “Age < 10”.
Unordered attributes have predicates of the form X ∈ C = {c1, c2, .., ck}, vi ∈ DX . For example,
“Car Models ∈ {MH1, MH5, CH4}”. v and C are called split points.

3.2.2 Impurity functions

The key idea of decision tree learning is : the data space will be divided into many rectangles by
determining their boundaries,recursively, until they can not be split anymore.The decision will be
made from these final rectangles. We will need a function to qualify the boundaries to find out the
best one for dividing data. These function also called “impurity” functions.

Entropy, Information Gain, Gini-index... are popular functions which used in trees constructing.

3.2.2.1 Entropy

Entropy H(S) is a measure of the amount of uncertainty or the impurity of the (data) set S.

17
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H(S) = −
∑

x∈X p(x) log2 p(x) , x belongs to X

Where,

S : The current (data) set for which entropy is being calculated

X : Set of classes in S

p(x) : The proportion of the number of elements in class x to the number of elements in set S

So, the smaller impurity, the better quality of split.

3.2.2.2 Information Gain

Information gain IG(A) is the measure of the reducing in entropy from before to after the set S is
split on an feature A. In other words, how much uncertainty in S was reduced after splitting set S
on feature A.

IG(A,S) = H(S)−
∑

t∈T p(t)H(t)

Where,

H(S) - Entropy of set S

T - The subsets created from splitting set S by attribute A such that S =
⋃
t∈T t

p(t) - The proportion of the number of elements in t to the number of elements in set S

H(t) - Entropy of subset t

3.2.2.3 Gini-Index

Gini-Index (or Gini impurity) is a measure of how often a randomly chosen element from the set
would be incorrectly labeled if it were randomly labeled according to the distribution of labels in
the subset. Gini impurity can be computed by summing the probability of each item being chosen
times the probability of a mistake in categorizing that item. It reaches its minimum (zero) when all
cases in the node fall into a single target category.

IG(f) =
∑m

i=1 fi(1− fi) =
∑m

i=1(fi − fi
2) =

∑m
i=1 fi −

∑m
i=1 fi

2 = 1−
∑m

i=1 fi
2

Where, i takes on values in 1, 2, ...,m

m is number of class of the target feature

fi is the fraction of items labeled with value i in the set

3.2.2.4 Least Square Error

Another way to qualify a split is calculating its Least Square Error. This criterion is used for building
regression tree by CART algorithm, which we will describe in section 3.2.3.
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D = 1
n

∑n
i (yi − r(β,xi))2

Where,

n is the sample size

(xi, yi is the data point)

r(β,xi) is the prediction of regression model r(β,x) for case (xi, yi)

3.2.3 Decision Tree

A decision tree is a hierarchical structure of nodes and directed edges. There are three kind of nodes
in a decision tree:

• Root node: The only one which has no incoming edges and zero or more outgoing edges. It
is the entrance of the tree

• Internal nodes (decision nodes): each of them has one incoming edge and two or more
outgoing edges

• Leaf nodes: each of them has one incoming edge and no outgoing edges

The path from the root to a leaf node in the tree defines a region.

Assume that in the tree, we have a directed edge: Node1 → Node2. We say, Node1 is the parent of
Node2; or Node2 is a child of Node1.

There are two ways to categorize decision trees: (i) using number children of non-leaf nodes and (ii)
using the type of the target feature.

If in a tree, the non-leaf nodes contain exactly 2 outgoing edges, we call it “binary tree” , otherwise,
“multiway tree” .

In a tree, if the target feature is categorical, we call “classification tree” ; if the target feature is
numerical we call“regression tree” .

There are many well-known algorithms to build a tree.For build a “binary tree”, the most popular
algorithm is “CART” (Classification and Regression Tree) which was invented by Breiman from 1984
and has been using until now [9].

For building “multiway classification tree”, “ID3” (Iterative Dichotomiser) is the essential algorithm,
which was introduced by Quinlan (1986) [19] . In 1993, Quinlan published an improvement version
of ID3, called “C4.5” which overcomes some disadvantages of ID3. C5.0 is a commercially successor
of C4.5.

“CART” and “ID3” will be detail described in the next sections.
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a b

Figure 3.1: (a) Multi-ways tree
(b) Binary tree

3.2.3.1 CART

The CART methodology is known as binary recursive partitioning because each data space alway be
split into two disjoin subspaces. At the initial state, the tree is null, which is corresponding to the
full data space. If the current data space meets the stop criteria, we create a leaf node. Otherwise,
we need to divide the data into two sub-disjoin spaces by finding a split point on one of features of
data by considering the quality of it. For example, we want to predict a person will go playing golf
or not by training model from data which has schema: Temperature, Humidity, IsWindy, PlayGolf.
Assume that, the predicate is “Temperatue ≤ 25′′, we create a node associated with it. The
records which satisfy this condition will be go into the left branch, otherwise, go to the right branch
to form up two sub-spaces, and so on. If a categorical feature is chosen for splitting, the value
of split point can be a subset of values of this feature in the current data space. For example:
“Humidity = {High,Medium}′′.

A leaf node can be created by taking a representative value of the target feature in the current data
: the value have the most frequency (in case of Classification Tree), the average value (in case of
Regression Tree).

The split point of a feature is chosen by a exhausted scanning through all possible split point
candidates, calculate the quality of each split point and choose the one has maximum quality. The
algorithm 2 expresses the whole tree learning process in the point of global view.

The output tree model from CART, as its name, can be a Regression Tree or Classification Tree
based on the type of the target feature.

Because CART scans through all possible split points to find the optimal partitioning, it can be time
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Algorithm 2 CART algorithm
function ExpandNode(data)

if canExpand then
(bestFeature, bestSpitpoint)← findSplitPoint(data)
D1 ← datapoints in data that satisfy the condition of bestSpitpoint
D2 ← datapoints in data that don’t satisfy the condition of bestSpitpoint
root← createNode(bestFeature, bestSplitpoint)
root.left← ExpandNode(D1)
root.right← ExpandNode(D2)
Return root

else
Return LeafNode(data)

end if
end function
function findSplitPoint(data)

for each feature fi in F do . F : the set of features
for each split point spj of feature fi do

qualityOfSplit(spj)← qualityFunc(sp)
end for
bestSplitPoint(fi)← argmax(qualityOfSplit)

end for
splitFeature← argmax(bestSplitPoint)
splitpoint← bestSplitPoint(splitFeature)

end function
tree← ExpandNode(fullData)
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consuming. If a numerical feature has N distinct values, it has N − 1 possible spit point. It’s not
too big. But, if a categorical feature has N distinct values, the number of split points is 2N −1. The
bigger N, the bigger problem. Fortunately, Breiman et. al. have proven that if the target feature has
zero class (in case Regression Tree) or has only two class (in case Classification Tree), the number
of split point of a predictor, which are need to be scanned is only N − 1 [9].

Finding the best split points The function findSplitPoint in Algorithm 2 described the overview
progress of finding the best split points of features in the training data. However, there is some
differences between treating Categorical feature and Numerical feature. In this section, we will go
into details of how to find the best split for each type of feature.

Finding the best split point of numerical feature In CART, the best split of Categorical
feature is determined by evaluating all candidates via the Least Square Error function. However,
with an continuous attribute, the number of split points is infinity, we can not evaluate all of them.
These splits are known to be the major bottleneck in terms of computational efficiency of tree
learning algorithms.

Fortunately, in [20], Torgo presented a fast incremental updating method to evaluate all possible
splits of continuous attributes with significant computational gains in binary regression tree building.
He defined that the best split s* is the split belonging to S that maximize the expression:

Q =
S2
L
nL

+
S2
R
nR

where,

Q is the quality of the split

S is the set of possible split points

tL, tR are the left and right branch of the current node

SL =
∑

DtL
yi, SR =

∑
DtR

yi are the sum of target feature’s values in the left and right branch

nL, nR are the number of samples in tL and tR respectively.

Algorithm 3 is the pseudo-code of the implementation of the above formula.

With any pair of adjacent values (xi, xi+1) of continuous feature X in dataset D, all split point
xj , such that xi < xj < xi+1 , use the same way to divide D into two disjoin part with the same
quality Q. Therefore,the possible split points set of numerical feature X is the ordered sequence of
midpoints of every adjacent X’s values. We try to calculate how many data points go into the left
and right branch, and the sum of Y ’s values in each branch. The best split point is the one which
maximize Q.

For example, suppose that we have the training data:

X, Y 10, 900
10, 1000
10, 1200
11, 300
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Algorithm 3 Find best split point of a numerical feature
function FindBestSplitpoint_NumericalFeature(Data, TargetFeatureY, PredictorX)
. Data : the training data of the current node
. Y : The feature which we want to predict its values
. X: the numerical feature, which we want to find the split point for

Sort the cases in Data according to their value in X
nt ← number of lines in Data
St ← sum of the target feature’ values in Data
SR = St;SL = 0 . SR, ST are the sum of the target feature’ values of cases that are in the

“left” and in the “right” the split point relatively
nR = nt;nL = 0 . nR, nT are the number of cases that are in the “left” and in the “right”

the split point relatively
BestT illNow = 0 . BestT illNow is the best quality of split point until now
for all instance i in Data do

SL = SL + yi;SR = SR − yi . yi is the value of the target feature in instance i
nL = nL + 1;nR = nR − 1
if xi+1 > xi then

NewSplitQuality =
S2
L
nL

+
S2
R
nR

if NewSplitQuality > BestTillNow then
BestT illNow = NewSplitQuality
BestCutPoint = xi+1+xi

2
end if

end if
end for
Return (BestCutPoint,BestT illNow)

end function
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12, 500
12, 800

For each X’s value, we try to calculate its frequencies in the training data and the sum associated
Y values after sorting data by X’s values. X, SumY, Frequency
10, 3100, 3
11, 300, 1
12, 1300, 2

In this case, we have 2 possible split points: 10.5 and 11.5.

Quality(10.5) = 31002/3 + 16002/3 = 40566666.66 , because if we split the data by value 10.5 on
this predictor, there are 3 lines will go into the left node, with the sum of target feature is 3100; and
3 lines will go to the right node with the sum of Y is 1600.

and similarly, Quality(11.5) = 34002/4 + 13002/2 = 37350000

So, 10.5 is the best split point of this feature.

Finding the best split point of categorical feature Given a categorical attribute X with K
distinct values. There are 2K−1 subsets which can be considered as split points. The bigger K, the
more computation time to evaluate all split points. Fortunately, Breiman et. al. (1984) [9] proved
an interesting result that changes the complexity of obtaining this type of split from O(2K−1) into
O(K − 1). Assuming that B is the set of values of X that occur in the current node. Defining ŷ(bi)
as the average Y value of the instances having value bi in feature X, we sort the value such that:

ŷ(b1) ≤ ŷ(b2) ≤ ... ≤ ŷ(bK)

Having the feature values sorted this way, Breiman and his colleagues have proven that the best
split on categorical attribute X in node t is one of the K − 1 splits:

XV ∈ {b1, b2, .., bK−1}

Algorithm 4 described the pseudo-code of this method.

The complexity of this algorithm is lower compared to the case of continuous variables. In effect,
it is dominated by the number of values of the attribute. The exception is the part of sorting the
values according to their average Y value. The sorting has complexity is O(KlogK) but to obtain
the average Y value associated to each value b we need to scan through all given instances with
the complexity O(N) which is most probability more complex than the sorting operation (N is the
number of training samples).

For example, suppose that in a node t, we have the following instances:

Color, Y
green, 24
red, 56
green, 29
green, 13
blue, 120
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Algorithm 4 Find best split point of a categorical feature
function FindBestSplitpoint_CatericalFeature(Data, TargetFeatureY, PredictorX)
. Data : the training data of the current node
. Y : The feature which we want to predict its values
. X: the categorical feature, which we want to find the split point for

Obtain the average Y value associated to each value of X
D ← Sort the values of X according to the average Y associated to each value
nt ← number of lines in Data
St ← sum of the target feature’ values in Data
SR = St;SL = 0 . SR, ST are the sum of the target feature’ values of cases that are in the

“left” and in the “right” the split point relatively
nR = nt;nL = 0 . nR, nT are the number of cases that are in the “left” and in the “right”

the split point relatively
BestT illNow = 0
for each value b of obtained ordered set of values D do

Y B ← Sum of the Y values of the cases with x = b
NB ← Number of the cases with x = b
SL = SL + Y B;SR = SR − Y B
nL = nL +NB;nR = nR −NB
NewSplitQuality =

S2
L

NL
+

S2
R

NR

if NewSplitQuality > BestT illNow then
BestT illNow = NewSplitQuality
BestPosition = Position of b in the set of ordered values D

end if
end for
BestSplitPoint ← the set of X value in the set of ordered values D that have position

≤ BestPosition
Return (BestSplitPoint,BestT illNow)

end function
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red, 45
blue, 100

To calculate the average Y of each value in attribute “Color”, we calculate the frequency of each
Color’s value and the sum associated Y values:

Color, Frequency, SumY
green, 3 , 66
red , 2, 101
blue, 2, 220

The average Y of each value in attribute “Color” is:

ŷ(green) = (24 + 29 + 13)/3 = 22
ŷ(red) = (56 + 45)/2 = 50.5
ŷ(blue) = (120 + 100)/2 = 110

By sorting values according to their average Y values respectively, we obtain the sequence: <green,
red, blue >

According to Breiman’s theorem the best split would be one of the K − 1 (in this case K − 1 = 2)
splits, namely the best split point Xv ∈ { {green} , {green, red} }.

If Xv = {green}, 3 observations will go into the left branch, the rest belongs to the right branch.
Quality({green}) = (24 + 29 + 13)2/3 + (56 + 120 + 45 + 10)2/4 = 14792.25.

Similarly, Quality({green, red}) = (24 + 56 + 29 + 13 + 45)2/5 + (120 + 100)2/2 = 29777.8

Because of having the biggest quality of splitting, {green, red} is the best split point.

This above procedures look like the word-count problem which we already introduced in section
1.2.1.1 : how many times a word appears in a document. The difference is, here, beside calculat-
ing the frequency of an predictor’s value, we compute the sum of target feature also. The detail
implementation of these algorithms will be discussed in the next sections.

From the best split points of all predictors in the current expanding node, we can find the best one,
which has the maximum splitting quality. It will become the split point of this node, and helps
dividing the data into two set. These two data sets are the training data for two child nodes.

3.2.3.2 ID3

To avoid the problem of the huge possible split points when having more than 2 classes in CART,
Quilan introduced ID3 (Iterative Dichotomiser 3) which partitions data by a different way. Instead
of finding best split point on a feature like CART, ID3 only find the predictor which can make a best
“splitting” on the data. He assumes if a categorical feature X is chosen for splitting, it will divides
data into N parts, where N is number of distinct values of X. That means we don’t need to scan
any split point of a categorical feature. The original ID3 doesn’t support to deal with a numerical
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feature. C4.5 overcomes this problem by treating numerical features in the similar way to CART.

The general pseudo code of ID3 algorithm with a customization to support numerical features is
shown below.

The default function to calculate the quality of split in ID3 is Information Gain (section 3.2.2.2).

3.2.4 Pruning

The output model from tree learning procedure can face to over-fitting issue: The tree is too fit
to the training data, but isn’t accuracy enough in the other testing sets. Or formally: Given a
hypothesis space H, a hypothesis h ∈ H is said to over-fit the training data if there exists some
alternative hypothesis h′ ∈ H, such that h has smaller error than h′ over the training examples, but
h′ has a smaller error than h over the entire distribution of instances.

Pruning is a technique to reduce the size of decision tree, aim to reduce the complexity of the final
classifier as well as increase predictive accuracy by solving problem of over-fitting and noisy data.
There are two kinds of pruning techniques:

• Pre-pruning (or Early Stopping Rules) : stops the algorithm before it becomes a full-grown
tree. For example: stop algorithm if the number of instances is less than a threshold or if the
class of the target feature are independent of the available features....

• Post-pruning: Grow the tree to its entirety and then trim the nodes in a bottom-up fashion.
If the generalization errors are improve after trimming, replace the sub-tree by a leaf node.

Because of pruning from the full tree, Post-pruning technique is more powerful than Pre-pruning,
but the running time from the beginning to get the final tree is more longer. Sometimes, we have to
make a weak split to be able to follow up with a good one. As a consequence, post pruning is used
more widely. In the next section, we only introduce about Post-pruning, particularly, Weakest Link
Cutting, a very popular approach.

3.2.4.1 Post Pruning with Weakest Link Cutting

Weakest Link Cutting or Minimal Cost-Complexity Pruning, has been proposed by Breiman et al.
in 1984, helps us find a optimal sub-tree from the full tree.

Denote, t is a node. Tt is a branch with the root node is t.

R(t) is the risk when predicting if we prune branch Tt (t becomes a leaf node)

R(Tt) is the risk when predicting before pruning if we don’t prune branch Tt (use its leave to make
predictions)

In case of classification tree, the risk can be the misclassification rate.

T̃ is a set of leaves of Tt

R(Tt) =
∑

t∈T̃R(t)
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Algorithm 5 ID3 algorithm
function BuildTreeID3(Data, TargetF eature, Predictors)

Create a root node for the tree
if all data belong to the same class or all predictor’s values is the same then

Return the single node with the most common target value
end if
if number of predictors is zero then

Return the single node with the most common target value
else

(bestFeature, bestSplitpoint)← getBestSplitPoint(Data)
Root← create node which contains the predictor is bestFeature
if bestFeature is categorical then

for each possible value vi of bestFeature do
Add a new tree branch below Root, corresponding to the test bestFeature = vi.
Data(vi)← the subset of data that have the value vifor A
if Data(vi) is empty then

add a leaf node below Root with label = most common target value in the data
else

below this new branch add the subtree BuildTreeID3 (Data(vi), Target_Feature,
Predictors - {bestFeature})

end if
end for

else if bestFeature is numerical then
D1 ← the subset of data that satisfy the condition of bestSplitpoint
D2 ← the subset of data that don’t satisfy the condition of thebestSplitpoint

end if
Return Root

end if
end function

function getBestSplitPoint(Data)
for each predictor fi in Data do

if fi is categorical then
Q(fi)← Quality of the full split on Data by choosing fi
SP (fi)← null . sign of a full split

else if fi is numerical then
for each split point spj of feature fi do

qualityOfSplit(spj) ← Quality of binary split fi on Data
end for
Q(fi)← max(qualityOfSplit)
SP (fi)← argmax(qualityOfSplit)

end if
end for
bestFeature← argmax(Q)
bestSplitpoint← SP (bestFeature)
Return (bestFeature, bestSplitpoint)

end function
28



Large-scale Customer Location Inference 29

R(Tt) is biased downward. Specifically, the weighted misclassification rate for the parent node is
guaranteed to be greater or equal to the sum of the weighted misclassification rates of its children:

R(t) ≥
∑

ti
R(ti) , ti is children of t

This means that if we simply minimize R, we always prefer a bigger tree, that can not solve over-
fitting problem. We need to add a complexity penalty to this misclassification error rate. The
penalty term favors smaller trees. Therefore, Breiman introduced “complexity parameter” α > 0 and
defined the cost-complexity measure Cα(Tt) = R(Tt) + α

∥∥T̃∥∥
It means that the more leaf nodes, the higher complexity. The cost complexity measure is considered
as a penalized version of misclassification error rate. This is the function need to be minimized when
pruning the tree. With α = 0, we prefer the biggest tree. With α approaches infinitive, the tree
of a single node will be selected. Generally, given a pre-selected α, we can find a tree T (α) that
minimize Cα(T ). This minimizing subtree for any value of α always exists because of the finiteness
of number sub-trees.

As long as Cα(Tt) < Cα(t), the branch Tt contribute the less complexity cost to tree than node t.
The inequation is satisfied with small α. When α increase to a certain value α∗, the equality of two
cost-complexity is achieved. At this point, the branch Tt can be replaced by t because it’s no longer
help improve the classification :

Cα∗(Tt) = Cα∗(t)

⇔ R(Tt) + α∗
∥∥T̃∥∥ = R(t) + α∗

⇔ α∗ = R(t)−R(Tt)

‖T̃‖−1

Generate subtrees

Let T1 is the full tree. Let g1(t) = R(t)−R(Tt)

‖T̃‖−1 if t is non-leaf of T1, infinitive if otherwise

g1(t) is call the strength of the link from node t. In Minimal Cost-Complexity Pruning, the nodes
that have the weakest link will be trimmed first. Let α1 = 0, α2 = g(t∗1) = min(g1(t)) , t belongs to
leaf nodes of T1. To get the optimal subtree corresponding to α2, simply remove then branch of t∗1.
When α increases, t∗1 is the first node that becomes more preferable than branch T ∗t1 .

Let T2 = T1 − T ∗t1 Do the same thing with T2 to obtain T3, and so on. Till the end, we have a list :
[(α1, T1), (α2, T2), ..., (αK , Tk)]

The theorem states that the αk are an increasing sequence, that is, αk < αk+1, k ≥ 1,where α1 = 0.
The pruning procedure gives sequence of nested subtrees: T1 > T2 > T3 > ... > Tk = rootnode.

For any k ≥ 1, αk ≤ α < αk+1 , the smallest optimal subtree T (α) = T (αk) = Tk , i.e., is the
same as the smallest optimal subtree for αk. Basically, this means that smallest optimal subtree Tk
stays optimal for all the α’s starting from αk until it reaches αk+1 or we can say [αk, αk+1) → Tk.
Although we have a sequence of finite subtrees, they are optimal for a continuum of α .

We have a sequence of subtree but we don’t know what tree is the best, or by other word, we don’t
know what value of α will give us the best tree. To choose value of α, we do Cross-Validation.

Cross-Validation
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The idea is that for each interval of α: Ik = [αk, αk+1), we try to estimate the error if we use
α1 ≤ α ≤ α2 and then select value of α minimize the error.

Split full training data into N -parts: D = D1∪D2∪D3∪ ...∪DN , where N is number of fold times.

In fold i, using data set L = D
Di as a training set to build the full tree Treei. Do the same thing in Generate subtrees to get the list
of (α, Treeialpha) For each interval Ik = [αk, αk+1), we select a representative value βk =

√
αkαk+1,

and find Treei(βk) and then calculate the misclassification error rate of it with the testing set is Di.

In the next fold i+ 1, we continue to find out list of Treei + 1(βk) and its error rate.

After N-folds, we calculate the average error of each Treei(βk) and select the tree has minimum
error. The value β∗ which associated to this tree will be the best value for α. The best prunned
tree is T (β∗).

But this tree is still a local optimal tree. The solution is using 1-SE rule to select the best Treei(βk)
instead of select tree has minimum value of average error. Another improvement can be done is, we
use the smaller version of the full tree, which have the equivalent error rate. Let’s call the full tree
from the beginning is T0. By bottom-up fashion, we prune all branch Tt which R(Tt) = T (t) to get
T1.

Cross-Validation is a very powerful solution to select value of α.

3.2.5 Random Forest

Random Forest[10] is a technique helps increasing predictive accuracy significantly by combine many
different trees(without pruning) and select the prediction which were voted by the most of trees.
The idea of Random Forest is simple, but it’s really powerful. We have two ways to generate a
“random tree” : randomize the training data, and randomize the expanding nodes.

Figure 3.2: Random Forest

Let’s K is the number of tree in the forest which we want to build, N is the number of lines in
training set D. To build each tree, select randomly N lines of D with replacement to form
up a new training set D1. Literature has proven that 2/3 instances of D will be selected with
some duplications. D2 = D\D1 is called “out-of-bag” data, which will be used for testing and other
purposes. On the other hand, to expand a node during building tree, instead of using all of predictors
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in D1, we select randomly p predictors to consider for splitting ( p << M , M is the number of
predictors in the data of each expanding node time). p is often equal

√
M or

√
M
2 .

After building the forest, when we need to predict a target value of unseen records, just pass it into
all trees and select the predicted values which the most of tree agree on.

Random Forest also be used for calculating the variable important factor and many other func-
tions. But for this project, we only implement a basic level of random forest, which provide enough
functionality for make decision.

3.3 Scalable Algorithm Design

3.3.1 Challenges

The main challenge of this approach is how to build tree models from over large datasets. Although
we can OpenPlanet can build Regression Tree in Hadoop, it still has some disadvantages. PLANET
and OpenPlanet makes a trade-off between finding the perfect split for an ordered attribute and
simple data partitioning [12, 23]. Before each iteration, OpenPlanet reads the whole training data for
MapReduce jobs with MapReduce. The result of jobs will be written into HDFS after each iteration.
That can lead to I/O overhead. Besides, OpenPlanet doesn’t support pruning and Random Forest.
Therefore, we address this challenges by designing new algorithms for building tree model as well as
for pruning and Random Forest.

The second challenge is determining the predictors: what features should be predictors ? We have
two kind of predictors: directly and indirectly. The directly features are the attributes that exist
already in the training data. In contrast, we have to aggregate features, combine with other data
to infer the indirectly features. In this project, due to data availability and feature lacking, we only
use directly features. Besides, among many features, to select the best predictors, function “Feature
Selection” of Random Forest is often used in literature. But within the limited time of this project,
we didn’t develop this function on scalable Random Forest.

In the next section, we focus to address the challenge of algorithm scalability. In spite of only
using classification tree, we also design the scalable algorithm for building regression tree for future
purposes.

3.3.2 Solutions

3.3.2.1 Labelling CART : The parallel tree building algorithm for CART

Inspired from Google Planet, we developed Regression Tree algorithm in SPARK with a scalable
version of CART, called Labelling CART. SPARK is a Hadoop-like, but it supports iterative algo-
rithm very well. The data will be stored in Resilient Distributed Dataset (RDD) in both memory
and disk. That helps to reduce I/O operations.With this algorithm, we use label to manage all
expanding node jobs at the same tree level in once, instead of using queue like Planet.

In this section, we will describe how to construct the tree. As the meaning of the algorithm’s name,
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“label” is an important factor to build the tree.

Assume that the input data D has N lines (or records/observations). We mark each record with
a “label”, which determines the node that this record will be used for expanding. When a node is
constructed, the “label”s are updated for the next building phase of it’s child nodes (if this node can
be expanded more).

3.3.2.1.1 Walk through Let’s take a walk-through to understand the idea of this algorithm. At
the initial state, the tree model is empty and we want to construct the root node, which associated
to ID 1 (or label = 1, analogy). Every records in the dataset will be marked label 1 for meaning :
these records are used for building node 1. Assume that , in the first iteration, after evaluating the
quality of possible split points, the best split is “Temperature < 10”. We create and add the root
node with this split information into the tree model. The records in data which satisfy the predicate
“Temperature < 10” are marked label 2, then be used for constructing node 2 in the next iteration.
The rest are marked label 3 and be used for expanding node 3. In this example, the best split has
10 records (D1) in the left branch and 140 records (D2) in the right branch. The controller then
start the new iteration to expand node 2 and 3 once. Node 2 stop expanding because it matches the
stop criterion (assume that 25 records is the smallest data for splitting).Therefore, it will be added
to the tree as a leaf. In opposition, Node 3 is expandable, then finds out the best split “Temperature
< 28” and be added to the tree as a internal node. The data in D1 which satisfy this predicate are
marked label 6 (=3*2). The remaining in D1 are marked as label 7 (=3*2 + 1). Node 6 and 7 are
constructed in the third iteration with the same procedure, and so on. Our algorithm expands trees
breadth first. The algorithm will stopped if there is no expandable nodes.

The more details of each iteration are described below.

Figure 3.3: Labelling CART’s Tree model
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3.3.2.1.2 Technical Details As mentioned 3.2.3, each iteration of CART has 4 steps/tasks:

• For each value of each feature, calculate the aggregate information of the associated values of
target feature

• Check the expandability of each node depend on its training data. Create leaf nodes for which
can not be expanded anymore

• For each feature in each node, find the best split point and calculate the quality of this split

• For each node, among the best split points of features, select one which has the maximum
value of quality and construct a internal node. Then update the label for the next iteration

In the scalable environment, each tasks will be done as a map-reduce jobs. We use a controller
to manage the iterations, update model and check the convergent point of the whole algorithm
(Algorithm 6). The controller maintains the followings:

• ExpandableNodes: The list of nodes which will be expanded

• Model (M) : The current tree model

After each iteration, the Model M will be written into disk once. The algorithm will be stop if the
list ExpandableNodes is empty.

Denote the feature ith is Fi (the target feature included)

Xi : the input feature or predictor i

Y : the target feature.

X : the set of predictors

k : the number of features

label : the label current node that we want to expand, is an integer number and equal to 1 if the
current expanding node is the root.

D : the original training data

Each iteration of this algorithm has 5 steps, which is represented as map-reduce jobs: Counting
Frequencies , Computing the statistical information of the target feature in each node, Finding
features’s best split point, Finding nodes’s best split point and Updating labels. Exceptionally, the
additional step “Preparation” is only executed before the first iteration.

Figure 3.4 describes the main steps of each iteration:

• (1) Preparation: initializing the first label for every sample of the training data

• (2) MR_CalculateFrequencies: calculating the frequency of each value of each feature in
each node
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Figure 3.4: Labelling Tree Building

• (3) MR_TargetFeatureInfoAgg: calculating the aggregated information of the target fea-
ture in each node (for checking the expandability)

• (4) MR_FindBestSplit_EachFeature: Finding the best split point of each feature in each
node

• (5) MR_FindBestSplit_EachNode: Finding the best split point of each node

• (6) Updating labels: Updating the new labels for the training data for preparing expanding
nodes in the next level.

Steps 2,3,4,5,6 will be looped until there is no node to expand anymore (Algorithm 6)

The detail implementation of each phase is described below.

In the Preparation, after reading data D from disk, we mark the first label for records in this data.
The first label is the root node’s ID (default is 1). We call the new data is D1.

The map-reduce jobMR_CalculateFrequencies will take input which has schema: (label, (vF1 , vF2 , ..., vFk−1
, y)),

where vFi is the value of feature Fi in this line, y is the target feature’s value.

In the map phase of MR_CalculateFrequencies, for each valid line, we separate values of features to
k values, and then emit k tuples, each tuple has form: ((label, Fi, vFi), (y, y

2, 1)) . A line of data is
valid if the associated label are positive, otherwise, that line is not used in tree learning anymore.
The information from label, Fi helps us remember this value is belong to what feature and be used
to build what node. These information also aim to expand nodes in parallel.

In the reduce phase ofMR_CalculateFrequencies, we aggregate information by calculating the partial
sum of the values.
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Algorithm 6 Controller - the main loop
Require: D : the training data
function BuildTree

D1 ← Preparation(D)
while true do

Frequencies ← MR_CalculateFrequencies(D1)
StatisticalInfoY ← MR_TargetFeatureInfoAgg(Frequencies)
checkExpansion(StatisticalInfoY)
Update model: Create leaf nodes for which are inexpandable
BestSplitOfEachFeature ← MR_FindBestSplit_EachFeature(Frequencies)
BestSplitOfEachNode ← MR_FindBestSplit_EachNode(BestSplitOfEachFeature)
CreateInternalNodes(BestSplitOfEachNode)
D1 ← UpdateLabels(D1)
if ExpandableNodes is empty then

exit
end if

end while
end function

Algorithm 7 Preparation
Require: Feature set F = {F1, F2, ..., Fk}
Require: D = RDD[(vF1 , vF2 , ..., vFk−1, y)]
FirstLabel = 1 . 1 is the ID of the root node
for each element e in D do

EMIT (FirstLabel, e)
end for

Algorithm 8 MR_CalculateFrequencies
Require: D1 = RDD[(label, (vF1 , vF2 , ..., vFk−1

, y))]
1: function map(D1)
2: for each element e = (label, (vF1 , vF2 , ..., vFk−1

, y)) in D1 do
3: if label > 0 then
4: for i = {1..k} do
5: EMIT ((label, Fi, vFi), (y, y

2, 1))
6: end for
7: end if
8: end for
9: end function

10:
11: function reduce(<Key=(label, F, v), Value Set V = {(yi, y2i , 1)}>)
12: EMIT <Key, (

∑
yi,
∑
y2i ,
∑

1) >
13: end function
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The map-reduce job MR_TargetFeatureInfoAgg filters out the statistical information of the target
feature only in each node. The statistical information is form of (label,

∑
y, sumy2, frequency),

where frequency is the number records in the training data of node which indicated by label,
∑
y

and
∑
y2 are the sum and the sum square of target feature’s values. Based on these information, the

controller calculates the deviance of the target feature’s values in each node to decide which nodes
should be stop to create a leaf node, which nodes can be expand to two children (called expandable).
A node will be stopped if it’s data is less than threshold1 lines or the deviance of Y in the data is
smaller than threshold2. These parameter were configured before starting the algorithm. In this
step, the map phase will filter D2 - the output of MR_CalculateFrequencies - to get only the tuples
which contains information of the target feature (Fi == Y ). The reduce phase will calculate the
deviance of Y in each node.

Algorithm 9 MR_TargetFeatureInfoAgg

function map(D2 = RDD[((label, F, v), (
∑
Y,
∑
Y 2, frequency))])

for each element e in D2 do
((label, F, v), (sumY, sumY 2, fre)) = e
if F == Target Feature then

EMIT (label, (sumY, sumY2, fre)
end if

end for
end function

function reduce(<Key K=label, Value Set V = {(sumYi, sumY 2i, frei)}>)
EMIT <Key, (

∑
sumYi,

∑
sumY 2i,

∑
frei) >

end function

Algorithm 10 Controller - Check the expandability of nodes

function checkExpansion(arr = Array[(label, (
∑
Y,
∑
Y 2, frequency))])

StopNodes ← ∅
ExpandableNodes ← ∅
for each element e = (label, sumY, sumY 2, frequency) in arr do

Deviance(Y) = DevCalculate(sumY, sumY2, frequency)
if frequency < threshold1 or Deviance(Y ) < threshold2 then

Create a leaf node with id=label and value = Average(Y)
else

ExpandableNodes = ExpandableNodes + label
end if

end for
Return ExpandableNodes

end function

After that, these information will be send back the controller for checking the expandability of each
node (Algorithm 10). The nodes which are expandable will be appended to the listExpandableNodes.
The others are represented as new leaf nodes in the tree model.

In step 3, we try to find the best split point of each feature in each node by executingMR_FindBestSplit_EachFeature.
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Algorithm 11 MR_FindBestSplit_EachFeature

function map(D2 = RDD[((label, F, v), (
∑
Y,
∑
Y 2, frequency))], ExpandableNodes)

for each element e in D2 do
((label, F, v), (sumY, sumY 2, fre)) = e
if F 6= Target Feature and label ∈ ExpandableNodes then

EMIT ((label, F), (v, sumY, sumY2, fre)
end if

end for
end function

function reduce(<Key K=(label,F), Value Set V = {(sumYi, sumY 2i, frei)}>)
if F is Categorical Feature then

EMIT (label, (F, F indBestSplitpoint_CatericalFeature(V )))
else

EMIT (label, (F, F indBestSplitpoint_NumericalFeature(V )))
end if

. In both cases, the emitting tuple has schema: ((label, (F,bestSplitPoint,qualityOfSplit))
end function

MapReduce job MR_FindBestSplit_EachNode will find the split point which maximizes the quality
of split of each node and then send back these information to driver to update the model by creating
the internal nodes.

Besides, one of the most important tasks in this step is updating the label for the next iteration
(for construction the child nodes). The part of data which belongs to leaf nodes will be marked a
negative label. The remaining are update to the new label. Let consider an expandable node which
has ID=labelk, the best split point is sp on the feature f . For each element e of the data D1 (which
is the input of MR_CalculateFrequencies), if vf is less than sp (in case f is numerical) or if vf ∈ sp
(in case f is categorical), we mark the new label for e is label ∗ 2, otherwise, label ∗ 2 + 1, where
label is the current label of e (Algorithm 14).

The next iteration will take the new data, and do the same process on it.

By this algorithm, all nodes in the same level will be expanded in one iteration. Note that “Prepa-
ration” and “Updating labels” are the map only jobs because they only transform the data but not
aggregate them. In SPARK, a series of map-only job or map functions will be aggregated and done
as a simple map phase. It means that step 1 (Preparation) and step 6 (Updating labels) are parts
of MR_CalculateFrequencies’s map phase. Therefore, the algorithm has only 4 Map-Reduce jobs
indeed.

3.3.2.2 Parallel algorithm for ID3

Different from CART, each node in ID3 tree model can have more than 2 nodes. If we expand a
node by choosing a categorical feature X, it will have n children, where n is the number of distinct
values of X. For example, if we use “DayOfWeek” as the splitting feature and it has 7 different
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Algorithm 12 MR_FindBestSplit_EachNode
function map(D3 = RDD[(label, (F, bestSplitPoint, qualityOfSplit))])

for each element e in D3 do
EMIT e

end for
end function

function reduce(<Key K=label, Value Set V = {(Fi, splitpointi, qualityi)} >)
MaxQuality ← −∞
Best ← UNKNOWN
for each vi = (Fi, splitpointi, qualityi) ∈ V do

if ( thenMaxQuality <qualityi)
MaxQuality = qualityi
Best = vi

end if
end for
EMIT (label, Best)

end function

Algorithm 13 Controller - Create internal nodes
function createInternalNodes(arr = Array [(label, (F, bestSplipoint, bestQuality))])

for each element e = (label, (F, bestSplipoint, bestQuality)) in arr do
Create an internal node with (label, F, bestSplitpoint)

end for
end function
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Algorithm 14 Updating labels
function updateLabels(arr = Array [(label, (F, bestSplipoint, bestQuality)), D1])

. D1 is the input of MR_CalculateFrequencies – the labeled data
for each element e = (currentlabel, (vF1 , vF2 , ..., vFk−1

, y)) in D1 do
(label, (F, bestSplipoint, bestQuality) ← element in arr which has label = currentLabel
if currentLabel ∈ ExpandableNodes then . If this line of data is still used in the next

iteration
if F is CategoricalFeature then

if vF ∈ bestSplitpoint then . bestSplitpoint is a set of values
Update label of e to currentLabel ∗ 2

else
Update label of e to currentLabel ∗ 2 + 1

end if
else

if vF < bestSplitpoint then . bestSplitpoint is a number
Update label of e to currentLabel ∗ 2

else
Update label of e to currentLabel ∗ 2 + 1

end if
end if

else
Update label of e to -9

end if
end for
Return D1

end function
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values: {Sun, Mon, Tue, Wed, Thu, Fri, Sat} then we will expand the current node into 7 child
nodes. That means, for unordered feature, it’s not necessary to evaluate all possible split points like
CART. We only need to qualify each splitting feature candidate. In this section, we introduce the
parallel algorithm for building ID3 tree model in scalable environment, called Lablelling ID3.

Besides, our algorithm overcomes a shortage of the original ID3: numerical feature support.

We use Labelling technique, which is described in section 3.3.2.1 for constructing all nodes in the
same level in parallel like Labelling CART. However, because of some differences in tree model, the
controller also has some changes.

In CART Tree model, because every internal node has two and only two children, we can manage
the ID of nodes, and use these ID for labelling the data easily. Nodes ID management in ID3 is
more complex : the ID of a child node is given by the controller via NextNode, instead of referring
from its parent.

Figure 3.5: Labelling ID3’s Tree model

3.3.2.2.1 Walkthrough When tree induction begins, the tree model has only root node (ID=1)
without any information. In addition, every record in the training data D is marked label 1 for
expressing that they are used for constructing node 1. In the first iteration, assume that after
evaluating all possible split points, the best split is “Temperature < 10”. We create the root node
associated to these splitting information. This split point leads to two empty children of the root
which are assigned ID 2 and 3 respectively. In dataset D, we suppose that there are 10 records
(D1) that satisfy the predicate “Temperature < 10”. These records are marked label 2 and belong
to the constructing of node 2. Similarly, the rest, 190 records (D2), are marked label 3. In the
second iteration, node 2 and 3 are expanded in parallel. With the given minimum record threshold
for expanding (minRecords ≥ 25), Node 2 matches the stop criteria. Thus, the controller updates
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the tree by treating Node 2 as a leaf with the decision value is the most frequent value of the target
feature inD1. when expanding node 3, we see that the splitting on the categorical feature “Humidity”
brings the best quality. Therefore, the controller update these information for node 3 in the tree
model and then it create 3 empty children for him, corresponding to 3 distinct values of attribute
“Humidity” in D2 (figure 3.5). The records in D2 which match the conditions “Humidity=Low”,
“Humidity=Normal” , “Humidity=High” are marked the new labels 4, 5 and 6 respectively to prepare
for next iteration....

The algorithm is terminated when there is no empty node in tree model.

The IDs of nodes are an increment sequence, ordered by their creation times.

Thanks to Lablelling technique, we can expand all nodes in the the same level in a single step
without maintaining any queue. We use empty nodes in the tree models to manage to expanding
nodes instead.

3.3.2.2.2 Technical Details Similar to Labelling CART, Labelling ID3 has a controller to
manage iterations and the tree models by maintaining and updating the current tree model through
the loop of iterations.

In this algorithm, we use the same terms as before in section 3.3.2.1.

Each iteration of Labelling ID3 has some main steps:

• (1) Preparation: initializing the first label for every sample of the training data

• (2) MR_CalculateFrequencies: calculating the frequency of each value of each feature in
each node

• (3) MR_GroupStatYByXValue: group the statistical information of the target feature by
each associated predictor’s value

• (4) MR_FindBestSplit_EachFeature: Finding the best split point of each feature in each
node

• (5) MR_FindBestSplit_EachNode: Finding the best split point of each node

• (6) Updating labels: Updating the new labels for the training data for preparing expanding
nodes in the next level.

Steps 2,3,4,5,6 will be looped until there is no empty node in the tree model (no node to expand
anymore) (Algorithm 15)

In the Preparation, after reading data D from disk, we mark the first label for records as same as in
the Labelling algorithm. The first label is the root node’s ID (default is 1). We call the new data is
D1. Besides, we create a empty root node in the tree model.

The map-reduce job MR_CalculateFrequencies (algorithm 16) takes input which has schema:
(label, (vF1 , vF2 , ..., vFk−1

, y)), where vFi is the value of feature Fi in this line, y is the target feature’s
value.
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Algorithm 15 ID3 - Controller - the main loop
Require: D : the training data
function BuildTree

D1 ← Preparation(D)
Create an empty root node in tree model M
while true do

frequencies ← MR_CalculateFrequencies(D1)
groupedStatY ← MR_GroupStatYByXValue(Frequencies)
bestSplitOfEachFeature ← MR_FindBestSplit_EachFeature(groupedStatY)
bestSplitOfEachNode ← MR_FindBestSplit_EachNode(groupedStatY)
UpdateModel(bestSplitOfEachNode)
D1 ← UpdateLabels(D1, M)
numEmtpy ← the number of empty node in M .
if numEmpty = 0 then

exit
end if

end while
end function
function UpdateModel(statisticalInfo = {labeli, splitFeaturei, splitpointi, gaini,
predictedV aluei})

for each element e in statisticalInfo do
(label, splitFeature, splitpoint, gain, predictedV alue) = e
if splitpoint = NULL then

update node which has ID=label to be a leaf node
else

update node which has ID=label to be an internal node
if splitFeature is categorical then

create N empty children for node which has ID=label . N is the number of value
of splitFeature in this node’s training data

else
create 2 empty children (left,right) for node has ID=label

end if
end if

end for
end function
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In the map phase of MR_CalculateFrequencies, for each valid line, we separate values of features to
k values, and then emit k tuples, each tuple has form: ((label, Fi, vFi , y), 1) . A line of data is valid
if the associated label are positive, otherwise, that line is not used in tree learning anymore.

In the reduce phase of MR_CalculateFrequencies, we simply compute the partial sum of the values
to get the frequency of each feature’s value.

Algorithm 16 MR_CalculateFrequencies
Require: D1 = <(label, (vF1 , vF2 , ..., vFk−1

, y))>
1: function map(D1)
2: for each element e = (label, (vF1 , vF2 , ..., vFk−1

, y)) in D1 do
3: if label > 0 then
4: for i = {1..k} do
5: EMIT <(label, Fi, vFi , y), 1) >
6: end for
7: end if
8: end for
9: end function

10:
11: function reduce(<Key=(label, Fi, vFi , yi), Value Set V = {1}>)
12: EMIT <Key,

∑
1 >

13: end function

In step 2, for each value of each feature, we calculate how many time each target feature’s value
appears (Algorithm 17). For example, assume that the input of this step is like below:

//(Label, Feature, XValue, YValue) , Frequency
(1,F1,20, yes), 1
(1,F1,22, yes), 2
(1,F1,20, no), 5

The output of this step will be:
(1, F1, 20), (yes, 1), (no , 5)
(1, F1, 22), (yes, 2)

The output of step 2 is also the input of step 3 (MR_FindBestSplit_EachFeature). The map phase
of this job sent the statistical information of each feature in step 2 to a reducer. Each reducer
receives something like (we use the json-like format for easier reading):

// (label, feature), statistical information
(1, F1), 20 : (yes, 1), (no , 5) , 22: (yes, 2)

Depends on the type of the feature, the reducer determines the way to find the best split point. A
categorical feature, which expands on all its values, will have the split point is these values. We
only need to calculate the quality of split (called “gain”). In contrast, with a numerical feature, we
have to scan for all possible splipoints by using the method of Breiman in CART, and calculate the
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Algorithm 17 MR_GroupStatYByXValue
function map(D2= {<(labeli, Fi, vi, yi), frequencyi >})

for each element e in D2 do
((label, F, v, y), fre) = e
EMIT <(label, F, v), (y, fre)>

end for
end function

function reduce(S = <Key=(label, F, v), Value{(yi, frei)} >)
EMIT <Key, Value >

end function

“gain” of each split. The best split point is the one maximize its gain (algorithm 20). Besides, the
statistical information of each feature also can be used to check the stop criteria of the associated
node. A node is inexpandable if (i) there is no predictor or (ii) the target feature has only one value
or (iii) the number of samples is smaller than a threshold.

Algorithm 18 MR_FindBestSplit_EachFeature
function map(D3 = { <(labeli, Fi, vi) , {(yi,j , frei,j)} >})

for each element e in D3 do
<(label, F, v) , {(yj , frej)}>= e
EMIT <(label, F), (v, {(yj , frej)}) >

end for
end function

function reduce(<Key = (label, F), Value={vi, { yi,j , frei,j}} >)
if F is categorical then

(bestsplit, gain, predictedValue) = FindBestSplit_CategoricalFeature(Value)
else

(bestsplit, gain, predictedValue) = FindBestSplit_NumericalFeature(Value)
end if
EMIT <Key, (bestsplit, gain, predictedValue) >

end function

The information of the best split point of each node is sent back to the controller to update the
current tree model. If a node has the best split is NULL, we update this node from empty to a
leaf node with the predicted value including. Otherwise, it is updated to a internal node with the
value for predicting. In addition, we create empty children for this node. The number of children is
exactly equal to the number of values in the split point’s feature.

Before running the next iteration, the labels of each record in the training data are updated by using
Algorithm 21. For each record, we traverse the tree model by checking it with the predicate of each
node, from the root. If we reach a empty node at the end, that means “this record will be used to
expand this node in the next iteration”. Therefore, the ID of this node will be the new label for this
record (Algorithm 21).
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Algorithm 19 MR_FindBestSplit_EachNode
function map(D4 = { <(labeli, Fi), (bestspliti, gaini, predictedV aluei) >})

for each element e in D4 do
<(label, F), (bestsplit, gain, predictedValue) >= e
EMIT <label, (F, bestsplit, gain, predictedValue) >

end for
end function

function reduce(<Key=label, Value={Fi, spliti, gaini, predictedV aluei})
maxgain = -∞
bestSplit = NULL
for each element e in Value do

(F , split, gain, predictedV alue) = e
if gain >maxgain and F 6= target feature then

maxgain = gain
bestsplit = e

end if
end for
EMIT <label, bestsplit >

end function

Remember that step Preparing and step UpdatingLabels are the map-only jobs. So, these job will
be parts of the map phase in Map-Reduce job CalculatingFrequencies by default in SPARK.

The next iteration will take the updated data, and do the same process on it.

3.3.2.3 Pruning

In this section, we introduce a parallel version of Pruning procedures, which helps reducing the size
of tree models to avoid over-fitting problem. Although the size of each tree model is quite small, we
still focus on the scalable implementation because the whole procedure has to run cross-validation
to re-learn tree models from different large datasets and evaluates all of them.

3.3.2.4 Random Forest

For building Random Forest in parallel, we need a Controller, which manage the learning processes
of trees in forest. The Controller maintains:

• Model Collection (MC): The set of tree model in the forest

• ExpandingTreeQueue (EQ: The queue of tree need to be constructed

Given K is the number of trees in the forest, MaxParallel is the maximum number of trees which
can be constructed in parallel. The Controller schedules the expanding tree off of EQ until the
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Algorithm 20 Function to find the best split point
function FindBestSplit_CategoricalFeature(S = {vi, { yi,j , frei,j}} )

predictedValue ← most common target value in S
if S match stop criteria then

return (NULL, -∞, predictedValue)
end if
XValueSet = {vi} . all values are split points
gain = InformationGain(S)
return (XValueSet, gain, predictedValue)

end function
function FindBestSplit_NumericalFeature(S = {vi, { yi,j , frei,j}} )

predictedValue ← most common target value in S
if S match stop criteria then

return (NULL, -∞, predictedValue)
end if
S′ ← sort S by vi ascending
maxgain = -∞
bestsplit = NULL
for each adjacent (xi, xi+1) do

sp = (xi + xi+1)/2
gain ← InformationGain when splitting by sp
if gain >maxgain then

maxgain = gain
bestsplit = sp

end if
end for
return (bestsplit, maxgain, predictedValue)

end function

Algorithm 21 UpdatingLabels
function U(p)datingLabelD1 = {(label, (vF1 , vF2 , ..., vFk−1

, y)) }, M . M is the current tree
model

for each element e of D1 do
node ← the deepest node in M when traversing e
if node is leaf then

update label of e to -9 . this record won’t be used in the next iterations
else

update label of e to newLabel
end if

end for
return D1

end function
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queue is empty and none of the tree it schedules remain running construction. Each tree building is
launched in a separate thread, so that Controller can send out multiple expanding tree in parallel.

Two important tasks which make a forest learning to be Random Forest learning is randomizing the
training set and randomizing the splitting features. The first task can be done easily with a built-in
function in SPARK. To do the second task, we use the same procedure of Labelling Tree Building,
which was presented in section 3.3.2.1, but modify the reduce function of Algorithm 12 a little bit
(Algorithm 22): for a given node, we only select the best split point on features that belong to a
random feature set (lines 12 and 14).

Algorithm 22 The modified version of MR_FindBestSplit_EachNode
1: function map(D3 = RDD[(label, (F, bestSplitPoint, qualityOfSplit))])
2: for each element e in D3 do
3: EMIT e
4: end for
5: end function
6:
7: function reduce(<Key K=label, Value Set V = {(Fi, splitpointi, qualityi)} >)
8: MaxQuality ← −∞
9: Best ← UNKNOWN

10: FullFeatureSet ← {Fi}
11: N ← number features in FullFeatureSet
12: RandomFeatureSet ← select randomly N/2 features in FullFeatureSet
13: for each vi = (Fi, splitpointi, qualityi) ∈ V do
14: if ( thenMaxQuality < qualityi and Fi ∈ RandomFeatureSet)
15: MaxQuality = qualityi
16: Best = vi
17: end if
18: end for
19: EMIT (label, Best)
20: end function

3.4 Experiment Evaluation

In this section, we used decision tree with pruning and random forest to predict the next location
of mobile user from data from MIT.

3.4.1 Data

In the experiment, we used MIT data which be introduced in chapter 2. This data is in schema:
Userid, Y ear,Month,Day,DayOfWeek, LocationAtT imeInterval1, LocationAtT imeInterval2,...,
LocationAtT imeIntervalL.Because time is a continuous variable, we tried to discrete it into L
equally time interval with length M (minutes).LocationAtT imeIntervali means the location which
user was be there in the longest time at time interval i.
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Algorithm 23 Random Forest Algorithm
function buildForest(K,MaxParallel)

Require: Training set D
CurrentExpanding ← 0
while true do

if NumTrees < K and number expanding trees < MaxParallel then
D1 = select N records from D with replacement . N is the number of records in D
NewThread(LabellingID3())

end if
if NumTrees ≥ K and no running job then

break
end if

end while
end function

For using with Tree-based approach, we transformed the current data into schema:

Userid,Month,DayOfMonth,DayOfWeek, currentT imeInterval, currentLocation, nextT imeInterval,
nextLocation

Where (currentT imeInterval, currentLocation) and (nextT imeInterval, nextLocation) are two
pairs of time/location in two adjacent time intervals.

To reduce the impact of the old information (of a long time before) and use this tree for unseen
user, we don’t use Userid, Month in building tree. The full data is sorted by userid and time, then
we select the first 80% days of the study of each user to form up the training data. The rest is
used for making testing data : in each day, generate randomly k test cases (k is random too). After
transforming, we have 163024 lines of training instances and 9371 lines of testing instances.

As mentioned before, we run evaluation with 2 model scopes: i) Global model ii) Individual model.
With each approach, we have many ways to choose the predictors. Using classification tree, we try
to predict the next location based on information of the day of week, the current location and the
next time interval:

NextLocation← DayOfWeek + CurrentLocation+NextT imeInterval

Where,

DayOfWeek and CurrentLocation are used as categorical features

NextT imeInterval is used as numerical feature

In the experiments below, we only use ID3 and Random Forest of ID3 to test the performances,
with different approaches and parameters:

• Global model: Use the whole training data to build a single full tree (without pruning) and
use this tree to make predictions for everyone

• Global model with pruning: The global model will be pruned to avoid over-fitting problem
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• Individual models: Use the data of each user to build a single full tree for theirself, and use
this tree to make predictions only for him/her

• Individual models with pruning: The individual model will be pruned before using

• Random Forest: Use the whole data to build a global forest, and then use this forest to make
predictions for everyone. Parameter N - number of trees will be used with different values: 5,
10, 20 to customize the forest

3.4.2 Set up

Because the data after pre-processing is quite small (around 4.4MB), we run it on the local environ-
ment, although the program can support to run in the scalable environment. The specifications of
computer: Macbook Pro, 2.2 GHz Intel Core i7, 8GB RAM, 128 GB SSD.

3.4.3 Results

According to the result of experiments, the Global model with pruning gives the best result with the
accuracy is 96.94%. The Random Forest with N=20 and N=10 also brings us the good performance
with the accuracies are 89% and 87% respectively.

Figure 3.6

The individual approach takes the most time to build the tree, but the performance is the worst.
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Figure 3.7
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Chapter 4

Trajectory-based approach : Movement
patterns identifying

4.1 Introduction

Although having quite high accuracy performance, tree-based algorithm still have some disadvantages.
Algorithms like CART, ID3, C4.5... don’t support incremental building. It means when we have the
new data input, we have to build the models from scratch again. Of course, we can use Streaming
Parallel Decision Tree (SPDT) [7] to overcome this shortage, but it can not be used with Random
Forest, which helps increase the accuracy significantly. Besides, because the input is historical data,
we have to take care the “out-of-date” data, which can take impact directly on the tree structure.

In other hand, algorithmic scalability of traditional approaches is problematic. Based on our expe-
rience with, for example, regression trees, it is clear that complex traditional techniques to address
regression and classification problems are difficult to parallelize. Instead, simpler – yet effective –
approaches designed with scalability in mind are amenable to a parallel implementation with substan-
tially smaller effort.

To address these lackings, we try another approach: trajectory-based approach. This approach can
helps us build incremental models, reduce the suffer from “old” data, can implement on both streaming
or batch processing architecture.

In this project, we use both temporal and spatial information, uses time-series knowledge and
clustering technique to prediction the next locations of a user at a given time in near future. The
new approach, named “Movement Pattern Identifying” (MPI), helps us predict the next location of
a given user at any time in the near future by using any sequence of locations in the near past. It
means the new approach is more flexible than the other in the literature, according to our knowledge.
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4.2 Background

The underlying idea of our algorithm is to treat user mobility as patterns, defined in a period of
time. By representing users as mobility patterns, our goal is to extract patterns from the data,
and to group similar patterns together. We treat the data as time-series information, and then use
clustering algorithms to do pattern extracting.

4.2.1 Time-Series

A time series is is a sequence S of historical measurements xt of an observable variable x at equal
time intervals.Time series are studied for several purposes such as the forecasting of the future based
on historical knowledge, the understanding of the phenomenon underlying the measures, or simply
a succinct description of the salient features of the series....[8].

In order to applied time-series in our approach, we need to transform the data into the suitable
schema.

As mentioned in section 2.3, the transformed dataset has the following “schema”:

userid, year,month, dayOfMonth, dayOfWeek, hour,minute, area.cellID, uniqueCellID

where uniqueCellID is an arbitrary mapping from area.cellID to a unique identifier. This is done
as follows: each tuple is sorted by area.cellID to extract distinct values; unique area.cellID are
assigned to a unique index to create the mapping.

In words, a single tuple in the original schema reads as “for a given user, he/she was connected to
the service cell uniqueCellID since time(year, month,day, hour, minute)”. For example:

20,2004,10,24,Fri,12,09,2200.453,18
20,2004,10,24,Fri,12,15,2200.493,32

which in words, indicates that at 12:09 Friday, 24/10/2004, user 20 changed the service cell which
his phone connect to to cellID 18. (Before this time, his phone connected to another cell ID, let’s
say 17, for instance). His phone kept connecting to cell 18 until 12:15 of the same day then changed
to cell 32.

Our goal is to develop a time series of cell IDs for each user in a given discrete time granularity. We
select such granularity to be a day-worth of data. The new data is in schema:[64]

userid, date, (time0, cell0), (time1, cell1), (time2, cell2), ..., (timeN, cellN)

which reads as: in the day indicated in the “date′′ attribute, the user indicated in the “userid′′

attribute changed the cell service N times. The sequence above, thus, indicates service cell transi-
tions, that happened at time indicated in the “time′′i attribute of the inner tuple (timei, celli). Our
pre-processing is not over. To train/detect patterns, we need to transform data from “transition
information” to “location information”, which look like: for a given user, at a given time, the service
cell is X. Because time is a continuous variable, we have to discretize it into smaller time intervals.

Why do we have to do it ? The fact that there are 2 approaches:

52



Large-scale Customer Location Inference 53

The first is keeping information in continuous of time. For example, we have a 2 movement paths
like bellow:

User0, time0 → time1 : location1, time1 → time2 : location2, . . . , timeN−1 → timeN : locationN
User1, time0′ → time1′ : location1′, time1′ → time2′ : location2′, . . . , timeN−1′ → timeN ′ :
locationN ′

In this approach, the length from time0 to time1 may be different from the length from time1 to
time2.

The second approach is we standardize each movement path into a sequence of locations in many
equally time intervals with length M. For example: (M = 60 minutes)

User0, 00 : 00→ 01 : 00 : locationA, 01 : 00→ 02 : 00 : locationB,...., 23 : 00→ 24 : 00 : locationZ
User1, 00 : 00 → 01 : 00 : locationA′, 01 : 00 → 02 : 00 : locationB′,...., 23 : 00 → 24 : 00 :
locationZ ′

or simplify it:

User0, locationA, locationB,....,locationZ
User1, locationA’, locationB’,...., locationZ’

Figure 4.1 shows the visualization of a movement path. The x-axis is hours in day. The y-axis
indicates the locations of a given user.

Figure 4.1: Example of a movement path

In our algorithm, we try to identify the similar movement paths and group them together. Using
a essentially sampling the original time series at regular time intervals to “align” their movement
paths (the second approach) will help this task done easier.

The challenge is: in each time interval, user can change and connect to many cells. For example,
from 12:00 to 13:00, the user connect to cell X in 15 minutes, and cell Y in 35 minutes, and then
reconnect to cell X in the rest of time. So what is the only one cell we put into data ? Our solution
is choosing the service cell which he spent the most of time in this time interval to connect to. It
means, we choose the service cell has the largest probability that the user will connect to in this time
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interval. Because we select only one cell to make data, we will ignore some other information which
can affect the accuracy of the whole algorithm. If M is small enough, this problem will disappear.
But how can we choose value for M ? It depends on the speed of the user’s movements. In our
project, we use different values of M . With MIT’s data, users don’t move a lot, M equals to 1 hour.
With the practical data from SWISSCOM, we set M to 15 minutes.

a b

Figure 4.2: (a) The unaligned movement paths are hard to calculate the similarity
(b) The movement paths are aligned with 4 time intervals (M = 360 minutes)

4.2.2 Clustering algorithm

Clustering algorithm helps grouping a set of objects in such a way that objects in the same group
(called a cluster) are more similar (in some sense or another) to each other than to those in other
groups (clusters). Clustering is a well studied problem, for which a number of popular algorithms
exist, belongs to 3 families: Centroid-based clustering, Distribution-based clustering, Density-based
clustering and Hierarchical clustering, such as: K-Mean (MacQueen, 1967) [17], DBSCAN (Martin
Ester et. al., 1996) [3], . . .

K-Mean firstly initializes K center points, and assign data points to the nearest center to form up
groups, then adjust the center by calculating the centroid point of data points in each group. We will
continue this procedure until the center points can not adjust anymore (or terminate the algorithm
after n iterations.) DBSCAN firstly initialize the set of centers with 1 point and then consider the
distance of each data point to the nearest center. If this distance is smaller a threshold, the data
point will be assigned to that center, otherwise, use this data point is a new center. The algorithm
will be stopped when there is no data point to be considered.

Each algorithm has some properties and drawbacks. For example, K-Mean and the other Centroid-
based algorithm are very simple, powerful and easy to implement in parallel but can not deal with
noises and requires the input value of the number clusters, what we don’t know definitely. Or with
DBSCAN and other Density-based algorithm, we often specify a threshold of maximum distance of
two points, and it often runs sequentially.

Because of these advantages of K-Mean, in our work, we chose it and a variation thereof (which is
customized to deal to its drawback) to help building models and compare their behavior.

Next, we introduce 2 simple clustering algorithms: one is K-Means, and the other is the variant of
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K-Means. Two algorithms are only different in the way to adjust center points after each iteration.

4.2.2.1 K-Means

As mention before, the algorithm of K-Means is quite simple: From the initial state, we select
random K points in the data to be the centers.

This algorithm will be executed in N iterations (or until when there is no change of the centers).

In each iteration:

* Assigning: for every point in the data, we calculate the distance to each center, and assign it to
the nearest center.

* Adjusting: adjust the center of each cluster by calculating the centroids point (by average) and
use it as a new center in the next iteration.

In 2009, W. Zhao introduced the parallel version of K-Means in MapReduce model [24]. At the initial
phase, they select randomly K centers as before. Each iteration of this algorithm is a MapReduce
job called MR_Clustering (Algorithm 24). The map phase does “Assigning” task. It assigns the
center point to the nearest center. The output of the map phase is pairs of form <c, p >, where c
is the nearest center of data point p. In the reduce phase, the data points which are assigned to the
same cluster will be dispatched to the same reducer. At each reducer, these data point are used to
calculate the new new position for the associated center. The new center points become the input
for the map phase in the next iteration.

4.2.2.2 K-Modes

The algorithm of K-Modes [11] is similar to K-Means, but instead of considering the average of each
cluster to be the new centroid, we consider the “mode” of this cluster.

Let X, Y be two categorical objects formed up by mcategorical attributes.The distance between X
and Y is the total mismatches of corresponding attributes of two objects. The smaller number of
mismatching, the more similarity. Formally,

distance(X,Y ) =
m∑
j=1

δ(xj , yj) (4.1)

where,

δ(xj , yj) =

{
1 xj 6= yj

0 xj = yj

For example, the distance from (1,2,3) to (4,2,5) is 2 because of the differences of values in the first
and third dimensions.

Let S = X1, X2, .., Xn is a set of categorical objects which are described by m categorical attributes.
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Algorithm 24 Parallel K-Means
Require: Data points P = {pi}
function MR_Clustering_map(Data points P = {pi}, Centers set C = {ci})

for each data point p in P do
nearestCenter ← NULL
nearestDistance ← 0
for each center c in C do

d ← distance(p, c)
if d < nearestDistance then

nearestCenter ← c
nearestDistance ← d

end if
end for
EMIT(nearestCenter, p)

end for
end function

function MR_Clustering_Reduce(Center c, set of data point S = {pi} )
newCenter ← average(S)
EMIT(c, newCenter) . this new center will be used in the next iteration

end function

function Controller
Centers ← select randomly K point in P
i ← 1
while true do

(OldCenters, NewCenters) ← MR_Clustering(P, Centers)
if NewCenters 6= OldCenters or i ≥ MaxInterations then

break
end if
i ← i + 1

end while
end function
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A mode Q of S is a vector [q1,q2, .., qm] that minimize the total distance to all objects in S. Q is
not necessary an object of S. S can have more than one mode.

For instance, the mode of 3 data points: (1,2,3); (1,6,5); (2;6; 3) is (1,6,3).

Like K-Means, at the initial stage, we select random K points in the data to be the centers.

The below process is executed until the centers have no change or the number of iterations is more
than a threshold:

* Assigning: for every point in the data, we calculate the distance to each center (by using the
equation 4.1), and assign it to the nearest center.

* Adjusting: adjust the center of each cluster by calculating the mode of the associated data
points and use it as a new center in the next iteration.

4.2.2.3 Distance Functions Overview

In any clustering algorithm, one of the most important point is: what is the distance function. The
distance of two movement paths is their similarity.

There are many ways to calculate the distance (now is the distance of two cell index) of two vectors
in which each dimension values is a metric space’s element, but the three below are simple and often
be used:

• Euclidean distance [4]

• Manhattan distance [5]

• Cosine similarity [2]

In the Evaluation section, we will use all of three to run algorithm and compare the accuracy in
predictions.

4.3 Algorithm

In this section, we introduce our algorithm, which combine time-series and clustering technique,
helps building incremental models and avoid the impact of the old data.

Firstly, let’s consider one observation: “The locations of a user is determined by the action which
he/she does”. Therefore, a sequence of locations has a strong relationship to the sequence of actions
of this user. Besides, people often change their locations only when they awake, or by words, they
start moving and create such sequence from the time they wake up and end it when sleeping (within
a day). For each new day, they start the new sequence of actions, or the new sequence of locations.
From that observation, we denote a movement path is a sequence of locations which a user visited,
order by time within a day (from 00:00AM to midnight).
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Obviously, the position of a user for a time in the future is given by the aggregate behaviors of the
user in the near past.

With a “regular” user, there are many similar movement paths. For a given user, is the “current”
movement path till now similar to any path which we already known ? Can we identify them, and
use them to make prediction ? That is the key idea of this approach.

Figure 4.3: Workflow of trajectory-based approach

From the training data, we do pre-processing to filter out the invalid data, and transform it to the
collection of daily movement paths of users. Then, using clustering algorithm to identify the similar
patterns and group them together. For each pattern, a representative model is generated. When
finishing the training phase, we have some global models. In the testing phase, for a given input,
we try to find the closet model for it, and use this model to make prediction for the next location.
An input is a sequence of pair time/location in the near past.

Next, we present the two main phases of our approach: i) the training phase, or model building phase,
which uses clustering to find groups of similar users and build a model of their mobility patterns, and
ii) the testing phase, or prediction phase, in which, for a given user, we use the available historical
information to select the closest model and use the latter to predict future possible locations of the
user.

4.3.0.3.1 Training phase Before this phase, we assume that the training data is preprocessed
as described in section 4.2.1 and has schema:

User, Location1, Location2,...., LocationL.

Where, Locationi is the location of user which indicated by User, in time interval i; L is the number
of time interval in each day.

The training phase has 2 main steps:

• Identify and group the similar paths (or also called clustering)

• Generate approximate models that are representative for each group

Identifying and grouping the similar paths With a regular user, his movement paths can be
very similar over days. In this phase, we try to identify them, and group them together. We can
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use any clustering algorithm, such as K-Mean, K-Mode, DBScan... For quick proving the potential
of this approach, and for simplicity in develop scalable algorithm, we use K-Mean and it’s variants.

The output of this step is groups (clusters) and their associated movement paths.

Generating models After clustering the data points, we get many clusters, each cluster has
information of the center points and the associated data points. Remember that each point is
sequence of locations and be viewed as a vector. Although these centers are the representatives of
the clusters, but it’s not good enough for using to make prediction. Because with the output of
K-Mean, the centers are the average of data points within the same cluster. If we use these center
points to make prediction, the results are not good (because the prediction can be a cell ID which
not exist in data). Besides, each dimension of centers has only one value. It’s mean, we can only
provide one value in each prediction.

Could we build models which can provide us more than one prediction ? Instead of store only one
value in each dimension of center point, we can store more, and make it become a Probabilistic
model . This is the purpose of this step.

Denote L = 60*24/M is the number of time intervals in each day, where M is the length of each
time interval (in minute).

After “Clustering” step, we have numbers of cluster of movement path. In this step, we will generate
the Probabilistic model for each cluster.

Given cluster with N paths:

Loc1,1, Loc1,2, .., Loc1,L
Loc2,1, Loc2,2, .., Loc2,L
...
LocN,1, LocN,2, .., LocN,L

We will generate a matrix Locs has size T × L. Each column contains value of cell ID and the
probability if connect to that cell, order by probabilities. T is the maximum number of location in
each time we should keep track. For each time interval i, select top T locations (and its probability)
which have the most frequency to be the column i of the matrix.

For example: M = 360 minutes, L = 4 time interval, we want to keep track T = 3 locations in
each time interval. Assume that after clustering, a cluster contains 100 movement paths, which is
summary like below:

Time interval 1 Time interval 2 Time interval 3 Time interval 4
Location Frequency Location Frequency Location Frequency Location Frequency

10 37 33 50 27 67 89 100
12 30 49 50 22 20
23 20 25 12
44 6 44 1
94 7

After selecting top 3 locations which have the most frequency in each time interval, we get the
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matrix:

(10, 0.37) (33, 0.5) (27, 0.67) (89, 1.0)
(12, 0.30) (49, 0.5) (22, 0.20) (_,_)
(23, 0.20) (_,_) (25, 0.12) (_,_)

It means that from 00:00 AM until 06:00AM, user connect to cell 10 in 37% of time; connect to cell
12 in 30% of time; and connect to cell 23 in 20% of time. From 06:00AM until 12:00 AM, user can
connect to : cell 33 with 50% and cell 49 with 50% of time. From 12:00 AM to 6:00 PM, user can
connect to cell 27, 22 or 25 with probabilities is 67%, 20%, 12% respectively. From 06:00 PM to
midnight, he only connect to cell 89 in all cases.

If using this model to make a prediction, we can give a distribution of up to 3 possible locations
which user can be visited in the time to come. By selecting top K locations as above, we make sure
the prediction has the biggest probability to be true.

The figure 4.4 expresses the key idea of this step;

Figure 4.4: Identifying and grouping similar movement paths

4.3.0.3.2 Testing phase : Make prediction In this phase, when the new input comes, we
have to select the best model, and use this model to make prediction.

Given model with data is matrix T × L. Each column contains value of cell ID and the probability
if connect to that cell, order by probabilities. (T is the maximum number of location in each time
we should keep track, L is the number of time interval in each day)

Given a series of time-location: S = [(time_interval1, cell1), (time_interval2, cell2), ..., (time_intervalN , cellN )]
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The number of elements of S may be smaller than L and time_interval1, time_interval2, time_intervalN
is not necessary be in the continuous sequence.

We try to find out which model is the best fit by calculate the matching rate of the input values on
each model:

rate =
∑m

i=1 f(loci, timei)

Where,

(loci, timei) is pair of (location, time_interval) – the ith element of the input

m is the number previous locations of the input

f(loc, time_interval) =

{
2−j/2 if location loc is found at row j of column time_interval
0 if location loc is not found in column time_interval

The best matching model is the model holding the biggest matching rate.

Assume that we want to predict the location of a given user at time interval t. The whole column
tth of the best matching model, which contains a sequence of locations ordered by its probability,
can be used as the prediction.

The matching formulation will keep the properties: matching 2 points at row i + 1 is better than
matching 1 point at row i.

Algorithm 25 described the implementation of this phase.

For more understanding, let’s take an example: assume that we have the input: (0, 12), (2, 27) means
in time interval 0, user connect to cell 12; in time interval 2, user connect to cell 27. We want to
predict the cell ID in time interval 3.

The model is :

(10, 0.37) (33, 0.5) (27, 0.67) (89,1.0)
(12, 0.33) (49, 0.5) (22, 0.28) ( _,_)
(23, 0.30) (_, _) (25, 0.15) ( _,_)

With value of input (0, 12), in column 0, we found cell 12 at row index 1.

With value of input (2, 27), in column 2, we found cell 27 at row index 0.

Weight = 2−1/2 + 2−0/2 = 1.707

The figure below shows the similar example.

Assume that we have 2 daily mobility patterns in the training data. They are clustered into two
groups (red and blue), and be generated two approximate models corresponding. The time interval
length M is 360 minutes (each day has 4 time intervals) . The testing input is a set of three pairs
time/location of the first three time intervals (indeed, the input is not necessary be list of locations
in the continuous time intervals). We want to predict the location of user in the last time interval. In
this example, the matching rate of the blue’s model is bigger than the red’s one. So, the prediction
is made base on the blue’s model.
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Algorithm 25 Make prediction from the probabilistic model
Require: models = array[modeli], is a collection of models
function FindBestMachingModel(input= array[(locationi, time_intervali)])

ninput ← number elements of input
bestRate← −∞
bestModel ← NULL
for each model m in models do

ratem ← 0
for j from 0 to ninput − 1 do

h← number rows of m
for r from 0 to h− 1 do

if locationi is found at row r then
ratem = ratem + 2−r/2

break
end if

end for
end for
if ratem >bestRate then

bestRate← ratem
bestModel← m

end if
end for
return bestModel

end function
function MakePrediction(input= array[(locationi, time_intervali)], t)

. t is the time interval in future
bestModel← FindBestMachingModel(input)
return column tth of bestModel

end function
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Figure 4.5: Example of making prediction

4.4 Scalable Algorithm Design

4.4.1 Challenges

Still be a main challenge of this project, over large dataset processing, the algorithms must have
ability to run in scalable environment, particularly SPARK. Consequently, our machine learning
algorithm need to have a controller to manage the whole distributed processes.

Besides, to prove the potential ability of our approach, we use K-Means and its variant to extracting
mobility patterns. As subsequence, there are two points we should address:

First, what is the value of K , or how many patterns in the data ? We have no knowledge about K
before doing clustering.

Seconds, how can we calculate the distance between movement paths ? Remember that each move-
ment path is a vector of locations. Each location can be the service cell ID, or the coordinate,
depends on the data. In the special case, if a location is represented by a service cell ID, and be
treat as a categorical attribute, we can use the distance function in equation 4.1. Otherwise, if a
location is constituted from coordinate, K-Modes’ distance is not a good choice. In this project, we
want to solve the general case : each location is a geographical point. With this point of view, the
algorithm can be changed and adapt to any kind of location in any data. Therefore, the movement
paths’ distance problem becomes how to calculate the distance between two locations.
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4.4.2 Solutions

In order to address the challenge of no knowledge about K when using K-Means, we can use some
solutions:

• (1) Using The most frequency clustering , our customized algorithm from K-Modes and K-
Modes, which is introduced in section 4.4.2.1, instead of K-Means

• (2) Do cross-validation for finding the best value for K: The computation of this solution is
expensive

• (3) Using other existing scalable clustering algorithms: unfortunately, at the beginning time
of this project, there is only K-Means is developed in scalable environment

Among them, the first choice is the most reasonable because “The most frequency” not only keeps
the simplicity of K-Means, but also has ability to adjust the number of cluster automatically. In
section 4.4.2.1, we introduce about this algorithm in both local and scalable environment.

Besides, to solve the challenge of the scalability from huge dataset, we design a scalable version of
the algorithm which is introduced before in section 4.4.2.2.We assume that the output models from
the training phase are small enough to stored on a local machine. That means, the testing phase is
done in a local environment, instead of scalable environment. Therefore, in section 4.4.2.2, we only
focus on how to parallelize steps in the training phase.

4.4.2.1 The most frequency clustering

The idea of this algorithm is similar to K-Means: instead of updating the center’s position of a
cluster by taking the average, we try to move the centers to the regions that contains as many data
points as possible, or we want to chose a “mode” that minimizes the distance to all other points in
the cluster. However, there are some differences with K-Modes or K-Means:

• Each point of input data in this approach is not necessary be a vector of categorical value

• The number of clusters after each iteration is not necessary equal to K

The implementation is describe in algorithm 26.

From the initial state, from N data points, select random K points as the centers. (
√

(N) <= K <
N)

The algorithm will run until there is no change in the centers or until the number of iteration reaches
a given threshold. In each iteration, there are two main tasks: (i)form up clusters and (ii) adjust
the centers.

To group data points into clusters, we assign each data point to its nearest center. A center point
will be removed if it doesn’t have any assigned data point.
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Algorithm 26 The most frequency algorithm
Require: maxIter is the maximum number of iterations, which is given by user
1:
2: function The_most_frequency(D = Array [datapoints])
3: N ← the number of data points
4: k ←

√
N

. K is the initial number of cluster
5: Centers ← sample K points from D
6: iteration ← 1
7: while Centers are not changed or iteration ≤ maxIter do
8: iteration ← iteration + 1
9: for each point p in D do

10: c ← the nearest center of p
11: cluterc ← cluterc + p

. cluterc is the set of data point which are assigned to center c
12: end for
13: Centers ← Centers removes clusters which don’t have data points
14: for each centeri in Centers do
15: centeri ← adjustCenter(clustercenteri)
16: end for
17: end while
18: return Centers
19: end function
20:
21: function adjustCenter(D = set of data points)
22: L ← number of dimension of data points in D

. each point is form of (x1, x2, ..., xL)
23: NewCenter ← any point in L-dimension space
24: for i from 1 to L do
25: if dimension i is categorical then
26: x ← the value occurs most frequently in all xi,j
27: else
28: x ← the average value of all xi,j
29: end if

. xi,j is the value in dimension i of point jth

30: Update the value of dimension i of NewCenter to x
31: end for
32: return NewCenter
33: end function
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To adjust a center, we will change its value of each dimension. Because there is no constrain about
the value type of each dimension in data points, we calculate the value of dimension of the new
center in two different ways, depend on its type.

If the type of a dimension is categorical, the new value is the one that occurs in the data point most
frequently. If the type of a dimension is numerical, the new value is the average of values in the
same dimension of data points.

For example, suppose that there is a cluster that has 4 data points, each data point is an element
of 3-Dimension space, two first dimensions are categorical, the last one is numerical.

(“1”, “5”, 3)
(“1”, “4”, 8)
(“3”, “4”, 1)
(“2”, “3”, 4)

In the first dimension, value 1 occurs most frequent (2 times). Similarly, in the second dimension,
value 4 has the most frequency with 2 time. Because the last dimension is numerical, we select 4 =
(3 + 8 + 1 + 4)/2 as representative value. Therefore, new center of this cluster will be (“1”, “4”, 4).

If types of all dimensions in data points are numerical, the “Updating” phase of this algorithm is the
same as of K-Means. If types of all dimensions in data points are categorical, it is the same as of
K-Modes.

Because we remove the center which has no associated data points, the number of cluster is changed
after iteration. At the end of the whole algorithm, we get K′ clusters (K′ < K).

Parallel version Like Parallel K-Means, each iteration of The most frequency is a MapReduce
job, called MR_Clustering (Algorithm 27).

The input of map phase is the set of data points, and the current centers. After finding and assigning
the nearest center for each data point, we submit a tuple them for reducer. Each reducer receives
a tuple: a center is the key, the list of associated points it the value. Depend on the type of each
dimension of data points, we update the value in this dimension of the center by different ways.

4.4.2.2 Algorithm

In this section, we introduce the scalable version of the algorithm which is describe in section 4.4.2.2.
We only focus on the parallelism of steps in the training phase: (i) Identifying and grouping the
similar paths and (ii) generating models.

4.4.2.2.1 Identifying and grouping the similar paths To identify and group the similar
mobility patterns, we use K-Mean and our algorithm “The Most Frequency” because of their sim-
plicities. Indeed, we can use any scalable clustering algorithm.
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Algorithm 27 Parallel The Most Frequency
Require: Data points P = {pi}
function MR_Clustering_map(Data points P = {pi}, Centers set C = {ci})

for each data point p in P do
nearestCenter ← NULL
nearestDistance ← 0
for each center c in C do

d ← distance(p, c)
if d < nearestDistance then

nearestCenter ← c
nearestDistance ← d

end if
end for
EMIT(nearestCenter, p)

end for
end function

function MR_Clustering_Reduce(Center c, set of data point S = {pi} )
L ← number of dimensions in each pi
newCenter ← NULL
for i = 0 to L do

if dimension ith is categorical then
newCenteri ← the value occurs most frequently in all xi,j

else
newCenteri ← the average of xi,j

end if
. newCenteri is the value in dimension i of newCenter . xi,j is the value in dimension i of

point jth

end for
newCenter ← average(S)
EMIT(c, newCenter) . this new center will be used in the next iteration

end function

function Controller
Centers ← select randomly K point in P
i ← 1
while true do

(OldCenters, NewCenters) ← MR_Clustering(P, Centers)
if NewCenters 6= OldCenters or i ≥ MaxInterations then

break
end if
i ← i + 1

end while
end function
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4.4.2.2.2 Generating models In this step, we want to generate the probabilistic model for
each group in the output of clustering step. Each group contains movement paths which are similar
together. In this algorithm, probabilistic model is a matrix of T×L, where T is the number locations
which we want to keep track, L is the number of time interval in each day. Column ith in the model
is the set of locations which users visit the most frequent in time interval ith.

In order to construct the model, we simply order locations in each time interval of movement paths in
the current cluster by their frequencies, and then select top T of them. This task is done by a series
MapReduce jobs: (1) Calculating frequencies of locations (MR_CalculatingFrequency), (2) Calcu-
lating Top-K Locations (MR_SelectingTopK ), (3) Constructing models (MR_ConstructingModels)
as Figure . Every single step is a MapReduce job. That makes sure the algorithm can run even if
K ∗ L is very big. (K is the number of clusters).

Figure 4.6: Steps in the training phase of Trajectory-based approach

The map phase’s input of MR_CalculatingFrequency is a set of tuples (p, c), in which, each element
expresses that data point p belongs to cluster c (Algorithm 28). This job is very similar to the word
count example, which is introduce in section 1.2.1.1.

Algorithm 28 MR_CalculatingFrequency
function map(Clusters = {(p, clusterid)})
. L is the number of time interval in each movement path

for timeInterval = 0 to L− 1 do
loc ← the location at time interval i of p
EMIT(<(clusterid , timeInterval, loc) , 1>)

end for
end function

function reduce(<Key=(clusterid, timeInterval, location), Value = {1} >)
frequency ←

∑
1

EMIT(<(clusterid, timeInterval, location), frequency >)
end function

The output of this job represents the frequency of locations in a given time interval in a given cluster
by tuples in the form of <(clusterid, timeInterval, location), frequency) >. This is also the input
of the next MapReduce job - MR_SelectingTopK. In the second job, each mapper scans through
the input, and then submits a tuple <K,V>for each records, where K = (clusteridi, timeIntervali)
and V=(locationi, frequencyi). The frequency information of locations at the same time interval
of the same cluster will be dispatched to the same reducer. In the reduce phase, we select the top
K locations based on their frequency (Algorithm 29).

In MapReduce job MR_ConstructingModels, we sent all time intervals and the associated top K
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Algorithm 29 MR_SelectinngTopK
function map(F = {<(clusteridi, timeIntervali, locationi), frequencyi >)})

for each element f = <(clusteridi, timeIntervali), (locationi, frequencyi) >) in F do
EMIT(<(clusteridi, timeIntervali), (locationi, frequencyi) >)

end for
end function

function reduce(<Key=(clusterid, timeInterval), Value = {(locationi, frequencyi)} >)
V ′ ← sort V by frequency descending
TOPK ← Select top K of V ′
EMIT(<(clusterid, timeInterval), TOPK)

end function

locations of each cluster to a reducer (Algorithm 30). At each reducer, the probabilistic model will
be constructed by aggregation information of all top K locations. Column ith is the Top K locations
at time interval ith.

Algorithm 30 MR_ConstructingModels
function map(F = {<(clusteridi, timeIntervali), TOPKi >)})

for each element f = <(clusteridi, timeIntervali), TOPKi >) in F do
EMIT(<clusteridi, (timeIntervali, TOPKi) >)

end for
end function

function reduce(<Key=clusterid, Value = {(timeIntervali, TOPKi)} >)
Matrix ← construct matrix from V alue
EMIT(clusterid, Matrix)

end function

4.5 Evaluation

In this section, we will describe our evaluation the algorithm with the two clustering approaches
(KMean, The most frequency) and different parameters for each algorithm. The models is evaluated
under two scope: Global and Individual.

4.5.1 Testing on MIT’s data

4.5.1.1 Methodology

We know that one of draw-backs of K-Mean is the input of number clusters in data , which we don’t
know at all. The number of cluster effects to the accuracy of the whole algorithm. So, we have to
find out some way to estimate this number. In these evaluation, we applied a simple technique to
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reach that goal. Because K-Mean requires the number of cluster, which is a mystery at that time,
we tried the algorithm with different values of K : 300, 350, 400, 450, 500 . With The most frequency
algorithm, it isn’t necessary to specify value of K.

4.5.1.2 Data

We use the data which has been presented in chapter 2, with 8904 records, corresponding to 8904 day
of the study. Our data has schema: userid, locationAtT imeInterval0, locationAtT imeInterval1,...,
locationAtT imeIntervalL

The first value of each line is the unique id of users. The next L values are the locations of that user
at L time intervals in each day. Because this data is not sorted by any feature, we selected randomly
80% as the training set. For the testing set, we select randomly 20% lines of data, and then, for
each line, select randomly a sequence of 4 locations: the first three locations and the time interval
corresponding will be use as the input for the testing phase; the last location is the actual outcome
which we want to predict. Specially, with the SINGLE approach, we have to input the userid also.

4.5.1.3 Set up

Because of the small size of training data, we run the algorithms on local mode( although it was
written for scalable environment) with the specs: Macbook Pro, 2.2GHz, Core i7, 8GB RAM.

4.5.1.4 Accuracy metric

With the GLOBAL approach, we input the sequences of three (location, time_interval) and predict
the fourth location as mentioned in step a. With the SINGLE approach, we add one more information
in the input: userid, because the models are built for each individual user. Each prediction of
the algorithm will contains TOPK = 3 pairs of (location, probability), where “location′′ is the
predicted location and “probability′′ is the percentage of time which the current user has visited
that “location′′. A prediction is true if one of three values contains value of “location′′ is equal to
value of the actual location.

4.5.1.5 Testing result on MIT’s data

The location of MIT’s data is the service cell ID.

We tried to make prediction by the models built by 2 above algorithms : K-Mean and The most
frequency with different distance functions, and then compared them in the figures 4.7 and 4.8.

The x-axis is algorithms, y-axis is the accuracy percentage of each algorithm. Because of the space
availability in the figure, we use some notations of the algorithm’s name, such as:

“Global-Kmean50-E” means “Building global models by KMean with K = 50, the distance function
is Euclidean”; “Global-Kmean50-M” can be read as “Buiding global models by KMean with K = 50
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and Manhattan distance”; “Single-TheMostFreq-E” means “Building models for each individual user
by The Most Frequency algorithm and Euclidean distance” and use the similar way for the others.

Figure 4.7: The accuracy of the algorithm with different clustering approaches and parameters

In the figure 4.7, we can see the accuracies of building models for each individual user approach
are higher than building global models for all user. But, with approach SINGLE by using KMean,
because of the mystery of how many mobility pattern of each user, we tried many values of K. The
bigger K, the more over-fitting problem. This weakness is solved by using “The most frequency
clustering” algorithm.

Figure 4.8 describes the time using for building models and testing with different approaches.

The time using for building models phase is proportional with the number of K - the number pattern
which we input for KMean. The testing time is almost a constant value. Because of building model
for each user sequentially in approach SINGLE, the training time is more higher than building
GLOBAL models.

Missing the geographical information lead to the less accuracy in calculating distance of two service
cells, that affect directly to the algorithm performance.

4.5.2 Testing result on SWISSCOM Data

4.5.2.1 Data

The data is collected in 9 days, split into 9 day based on the continuous of time:
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Figure 4.8: Time using for building model and testing

• Part 1: [13/05/2014 - 17/05/2014] : 16 GB

• Part 2: [23/06/2014 - 26/06/2014] : 2 TB

In this evaluation, we only build the global models on Part 1.

Part 1 contains information of 282768 users. We select 80% data from each user to form up the
training set. The rest is testing set. It means, each user has only 3 movement paths for training.
In case there is no user share the same pattern with another, the ratio of number clusters on the
number of data points is around 1/3 (not good for clustering).

Besides, the data from SWISSCOM not only contain the information of cell like ID and coordinate,
but also contains coordinates of users.

4.5.2.2 Methodology

Because each value of a daily movement path is the compound of location and time, two users share
the same movement path means that these users have the close houses, go to the close place in the
same time intervals. The bigger time interval length M, the bigger probability of the case that two
users can share the same pattern. It seems that, there are not many pattern which are shared by
multiple users. With 282768 users in the training data, each user has only 3 movement paths, the
number of clusters can be up to 200000. This is a very big number, and can not be run in the current
implementation and the current infrastructure. Besides, The most frequency is only suitable to
applied on the data which K is more smaller than N. (K is the number of clusters, N is the number
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of samples). Therefore, we try to evaluate the trajectory-based approach by build global models on
Part 1 data with K-Means, K= 4000.

In this testing, we use coordinate of each user as his/her location. The coordinate is compound
of latitude and longitude, for example (43755553.0, 343929.0)...

4.5.2.3 Set up

The cluster is used for evaluation has 1 master (34 cores, 40GB RAM) and 17 workers (2 cores, 2GB
RAM).

4.5.2.4 Result

By considering each location coordinate, which is compound of latitude and longitude, as a tuple
of two numbers, we calculate the error of the prediction on each component separately instead of
calculating the geographical error.

The average error of prediction is (2110.622525430246, 1001.1482063166551)

Besides, in 11030/19970 ≈ 50% cases, we predict exactly the coordinates of a user.

The value K=4000 is too small with its true value. So, the result is not good as expected.
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Chapter 5

Conclusion and future works

5.1 Conclusion

We have addressed the problem of location inference using two different algorithmic approaches:
tree-based and trajectory-based approach for batch processing architecture.

As studied in literature, the tree-based approach, using Decision tree (ID3, CART) with the support
of Random Forest, give us a very good performance. However, it’s inflexible and hard to port to
streaming architecture.

The second approach: Movement pattern identifying is more flexible, near with natural thinking,
also give us the very promising results. Especially, the algorithm for this approach is incremental
and easy to implement on streaming architecture.

5.2 Future works

Because of the time constrain of this project, the acceptable results from both approaches is not
described all their abilities. In the future, respect to each algorithm, we can do some improvement
to increase the performance overall.

5.2.1 Tree-based approach

In this project, we only used some directly features as predictors. These predictors didn’t assure
getting the best result.

The first improvement we can do is applying the “feature selection” to choose the good predictors.
A feature selection algorithm is a the combination of a search technique for proposing new feature
subsets, along with an evaluation measure which scores the different feature subsets.

In addition, the existing feature can combine with data from other source to refer the new feature,
which can useful in our algorithm, such as : The semantic places near by the current location, the
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actual road map...

5.2.2 Trajectory-based approach

Section 4.3 described the steps to identify and group the similar patterns: From the whole data
after pre-processing, consider each line as a data points, and run the clustering algorithm to divide
data points into groups and generate model for each group.

The problem is, the data from SWISSCOM contains information of millions users, each user can
have a lot of days of study. There is not many users have the similar movement paths (because
they live at different houses, go to office at different hour...). Besides, each user can have more than
1 mobility pattern. It means that there may be more than millions patterns, and we can not run
clustering algorithms with big value of K like that to build global models!

The disadvantage of building “Individual models” is inflexible. With a new user, we don’t have his
model for making prediction. That why we prefer global models to the individual models. So, how
can we build global models in the better way ?

5.2.2.1 Improvement 1

Let’s consider the requirements of clustering algorithm’s output. We want to minimize the internal-
distance (distance between datapoints in the same cluster) and maximize the intra-distance (distance
between clusters). One observation is, the movement paths in the same cluster often only belongs
to very little users. If the number clusters of the output is smaller than its true values (case 1), the
internal distance is big. If the number of clusters of the output is bigger than its true value (case 2),
the intra-distance is big, and we get the over-fitting problem. But, in this project, using the habit
of a user to predict the next behavior of this user (case 2) is often better than using the habit of a
groups similar users for this task (case 1).

On the other hand, in case already having a good clustering result, we can make a strong assumption
that: for a given cluster, the movement paths in this cluster is often belong to very little users.
Because each value of a daily movement path is the compound of location and time. Two users
share the same movement path means that these users have the close houses, close office, go to the
close locations in the same time intervals. The bigger time interval length M, the bigger probability
of the case that two users can share the same pattern. It seems that, the mobility patterns can be
firstly clustered by user id before running clustering algorithm for each user. The disadvantage of
this approach is wasting resources. Because, if there is some users share the same patterns (such as
pattern of cases: 3 people in a family go to the park at every weekend), we have to store one pattern
three times. Although this problem doesn’t affect to the accuracy of the algorithm, we will waste
the disk space. But it’s not a big deal.

The improved algorithm is summarized in the figure 5.1:

The training data firstly split into many smaller parts by user id, and then the clustering algorithm
is ran on each part to divide movement paths of each user into group. For each group, generate a
model. This model will be a part of the global models. This procedure can be done in parallel:
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Figure 5.1: Improved version of identifying and grouping similar movement paths

Algorithm 31 Parallel version of Improvement 1
function map_identifying_and_grouping_paths(data)

for each movement paths m in data do
uid← user id of m
EMIT (uid, m)

end for
end function

function reduce_identifying_and_grouping_paths(Key K=uid, Value Set V = {mi})
EMIT (uid, K_Means_Parallel(V ))

end function

The testing phase is the same as before: With a testing input, among the global models, we will
find the closet one and use it to make prediction. If we can not find any acceptable closet model,
we can consider the testing input belongs to a completely new cluster.

5.2.2.2 Improvement 2

This improvement’s purpose is overcome the disadvantage of Improvement 1. According to the
algorithm which is described in figure 5.1, among the global models, there are some duplications.
These duplications lead to wasting resources. To solve this problem, we can do a merging phase
after finish running clustering algorithms on all data parts. This phase can be done in parallel:

Instead of mering all models in a single machine, we try to identify the possible similar models by
hashing each model into a value. The key/value pair output of the map phase is< hashedV alue, (model, uid) >
. The models have the same hash value will be sent to the same reducer. In reduce phase, the possible
similar models will be merged in the local worker.

The most important factor of this improvement is the hash function. It has to minimize the number
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Algorithm 32 Merging duplicated models
function map_merging(models)

for each model m in models do
uid← user id of m
EMIT (hashFunction(m), (m,uid)))

end for
end function

function reduce_merging(Key K=hashedModel, Value Set V = {((mi, uidi)})
EMIT (Merging_local(V ))

end function

of cases: two models which are similar but have different hash value.

The simple hash function we used is: H(model) = X, where X is the location has the most frequent
in this model.

5.2.2.3 Improvement 3

Until now, the closet model is picked by calculate the matching rate r of the testing input. Because
the testing input is only a few pairs of location/time, it can lead to the “local” closet model, which
will affect the accuracy result.

We can reduce this problem by calculate the fitting_value F instead of matching rate of each
model by the following formula:

F = αδ + βr

where,

δ equal to 1 if the model is belong to the testing user

r is the matching rate (as before)

α is the weight of matching user

β is the weight of matching model

If β = 0 the fitting value is equal to the matching rate.
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