-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathrun.py
executable file
·608 lines (544 loc) · 32.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#!/usr/bin/env python3
import argparse
import os
import shutil
import nibabel
from glob import glob
from subprocess import Popen, PIPE
from shutil import rmtree
import subprocess
from warnings import warn
import pandas as pd
import re
import errno
def run(command, env={}, ignore_errors=False):
merged_env = os.environ
merged_env.update(env)
# DEBUG env triggers freesurfer to produce gigabytes of files
merged_env.pop('DEBUG', None)
process = Popen(command, stdout=PIPE, stderr=subprocess.STDOUT, shell=True, env=merged_env)
while True:
line = process.stdout.readline()
line = str(line, 'utf-8')[:-1]
print(line)
if line == '' and process.poll() is not None:
break
if process.returncode != 0 and not ignore_errors:
raise Exception("Non zero return code: %d" % process.returncode)
# warn about freesurfer version
with open(os.path.join(os.environ['FREESURFER_HOME'], 'build-stamp.txt'), 'r') as h:
bs = h.read()
if 'x86_64-7.' in bs:
fsversion=7
else:
fsversion=6
warn("You are using FreeSurver version 6. "
"The FreeSurfer 7 BIDS-App is now available via docker pull bids/freesurfer:v7 . "
"FreeSurfer 7 will become the default version in the FreeSurfer BIDS-App begining in 2024. "
"From that point on, the FreeSurfer 6 BIDS-App will remain available at bids/freesurfer:v6 .")
__version__ = open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'version')).read()
parser = argparse.ArgumentParser(description='FreeSurfer recon-all + custom template generation.')
parser.add_argument('bids_dir', help='The directory with the input dataset '
'formatted according to the BIDS standard.')
parser.add_argument('output_dir', help='The directory where the output files '
'should be stored. If you are running group level analysis '
'this folder should be prepopulated with the results of the'
'participant level analysis.')
parser.add_argument('analysis_level', help='Level of the analysis that will be performed. '
'Multiple participant level analyses can be run independently '
'(in parallel) using the same output_dir. '
'"group1" creates study specific group template. '
'"group2" exports group stats tables for cortical parcellation, subcortical segmentation '
'a table with euler numbers.',
choices=['participant', 'group1', 'group2'])
parser.add_argument('--participant_label', help='The label of the participant that should be analyzed. The label '
'corresponds to sub-<participant_label> from the BIDS spec '
'(so it does not include "sub-"). If this parameter is not '
'provided all subjects should be analyzed. Multiple '
'participants can be specified with a space separated list.',
nargs="+")
parser.add_argument('--session_label', help='The label of the session that should be analyzed. The label '
'corresponds to ses-<session_label> from the BIDS spec '
'(so it does not include "ses-"). If this parameter is not '
'provided all sessions should be analyzed. Multiple '
'sessions can be specified with a space separated list.',
nargs="+")
parser.add_argument('--n_cpus', help='Number of CPUs/cores available to use.',
default=1, type=int)
parser.add_argument('--stages', help='Autorecon stages to run.',
choices=["autorecon1", "autorecon2", "autorecon2-cp", "autorecon2-wm", "autorecon-pial", "autorecon3", "autorecon-all", "all"],
default=["autorecon-all"],
nargs="+")
parser.add_argument('--steps', help='Longitudinal pipeline steps to run.',
choices=['cross-sectional', 'template', 'longitudinal'],
default=['cross-sectional', 'template', 'longitudinal'],
nargs="+")
parser.add_argument('--template_name', help='Name for the custom group level template generated for this dataset',
default="average")
parser.add_argument('--license_file', help='Path to FreeSurfer license key file. To obtain it you need to register (for free) at https://surfer.nmr.mgh.harvard.edu/registration.html',
type=str, default='/license.txt')
parser.add_argument('--acquisition_label', help='If the dataset contains multiple T1 weighted images from different acquisitions which one should be used? Corresponds to "acq-<acquisition_label>"')
parser.add_argument('--reconstruction_label', help='If the dataset contains multiple T1 weighted images from different reconstructions which one should be used? Corresponds to "rec-<reconstruction_label>"')
parser.add_argument('--refine_pial_acquisition_label', help='If the dataset contains multiple T2 or FLAIR weighted images from different acquisitions which one should be used? Corresponds to "acq-<acquisition_label>"')
parser.add_argument('--refine_pial_reconstruction_label', help='If the dataset contains multiple T2 or FLAIR weighted images from different reconstructions which one should be used? Corresponds to "rec-<reconstruction_label>"')
parser.add_argument('--multiple_sessions', help='For datasets with multiday sessions where you do not want to '
'use the longitudinal pipeline, i.e., sessions were back-to-back, '
'set this to multiday, otherwise sessions with T1w data will be '
'considered independent sessions for longitudinal analysis.',
choices=["longitudinal", "multiday"],
default="longitudinal")
parser.add_argument('--refine_pial', help='If the dataset contains 3D T2 or T2 FLAIR weighted images (~1x1x1), '
'these can be used to refine the pial surface. If you want to ignore these, specify None or '
' T1only to base surfaces on the T1 alone.',
choices=['T2', 'FLAIR', 'None', 'T1only'],
default=['T2'])
parser.add_argument('--allow_lowresT2', help='Use T2 images that are lower resolution than (~1x1x1), to refine pial surface.',
action='store_true')
parser.add_argument('--hires_mode', help="Submilimiter (high resolution) processing. 'auto' - use only if <1.0mm data detected, 'enable' - force on, 'disable' - force off",
choices=['auto', 'enable', 'disable'],
default='auto')
parser.add_argument('--parcellations', help='Group2 option: cortical parcellation(s) to extract stats from.',
choices=["aparc", "aparc.a2009s"],
default=["aparc"],
nargs="+")
parser.add_argument('--measurements', help='Group2 option: cortical measurements to extract stats for.',
choices=["area", "volume", "thickness", "thicknessstd", "meancurv", "gauscurv", "foldind",
"curvind"],
default=["thickness"],
nargs="+")
parser.add_argument('--qcache', help="Enable qcache", action='store_true')
parser.add_argument('-v', '--version', action='version',
version='BIDS-App example version {}'.format(__version__))
parser.add_argument('--bids_validator_config', help='JSON file specifying configuration of '
'bids-validator: See https://github.com/INCF/bids-validator for more info')
parser.add_argument('--skip_bids_validator',
help='skips bids validation',
action='store_true')
parser.add_argument('--3T',
help='enables the two 3T specific options that recon-all supports: nu intensity correction params, and the special schwartz atlas',
choices = ['true', 'false'],
default = 'true')
args = parser.parse_args()
three_T = vars(args)['3T']
if args.bids_validator_config:
run("bids-validator --config {config} {bids_dir}".format(
config=args.bids_validator_config,
bids_dir=args.bids_dir))
elif args.skip_bids_validator:
print('skipping bids-validator...')
else:
run("bids-validator {bids_dir}".format(bids_dir=args.bids_dir))
subject_dirs = glob(os.path.join(args.bids_dir, "sub-*"))
#Got to combine acq_tpl and rec_tpl
if args.acquisition_label and not args.reconstruction_label:
ar_tpl = "*acq-%s*" % args.acquisition_label
elif args.reconstruction_label and not args.acquisition_label:
ar_tpl = "*rec-%s*" % args.reconstruction_label
elif args.reconstruction_label and args.acquisition_label:
ar_tpl = "*acq-%s*_rec-%s*" % (args.acquisition_label, args.reconstruction_label)
else:
ar_tpl = "*"
#Got to combine acq_tpl and rec_tpl
if args.refine_pial_acquisition_label and not args.refine_pial_reconstruction_label:
ar_t2 = "*acq-%s*" % args.refine_pial_acquisition_label
elif args.refine_pial_reconstruction_label and not args.refine_pial_acquisition_label:
ar_t2 = "*rec-%s*" % args.refine_pial_reconstruction_label
elif args.refine_pial_reconstruction_label and args.refine_pial_acquisition_label:
ar_t2 = "*acq-%s*_rec-%s*" % (args.refine_pial_acquisition_label, args.refine_pial_reconstruction_label)
else:
ar_t2 = "*"
# if there are session folders, check if study is truly longitudinal by
# searching for the first subject with more than one valid sessions
multi_session_study = False
if glob(os.path.join(args.bids_dir, "sub-*", "ses-*")):
subjects = [subject_dir.split("-")[-1] for subject_dir in subject_dirs]
for subject_label in subjects:
session_dirs = glob(os.path.join(args.bids_dir, "sub-%s" % subject_label, "ses-*"))
sessions = [os.path.split(dr)[-1].split("-")[-1] for dr in session_dirs]
n_valid_sessions = 0
for session_label in sessions:
if glob(os.path.join(args.bids_dir, "sub-%s" % subject_label,
"ses-%s" % session_label,
"anat",
"%s_T1w.nii*" % ar_tpl)):
n_valid_sessions += 1
if n_valid_sessions > 1:
multi_session_study = True
break
if multi_session_study and (args.multiple_sessions == "longitudinal"):
longitudinal_study = True
else:
longitudinal_study = False
subjects_to_analyze = []
# only for a subset of subjects
if args.participant_label:
subjects_to_analyze = args.participant_label
# for all subjects
else:
subject_dirs = glob(os.path.join(args.bids_dir, "sub-*"))
subjects_to_analyze = [subject_dir.split("-")[-1] for subject_dir in subject_dirs]
# workaround for https://mail.nmr.mgh.harvard.edu/pipermail//freesurfer/2016-July/046538.html
output_dir = os.path.abspath(args.output_dir)
if os.path.exists(args.license_file):
absPathLic = os.path.abspath(args.license_file)
env = {'FS_LICENSE': absPathLic}
else:
raise Exception("Provided license file does not exist")
# running participant level
if args.analysis_level == "participant":
fst_links_to_make = ["fsaverage", "lh.EC_average","rh.EC_average"]
for fst in fst_links_to_make:
try:
os.symlink(os.path.join(os.environ["SUBJECTS_DIR"], fst),os.path.join(output_dir, fst))
except OSError as e:
if e.errno == errno.EEXIST:
print("Symbolic link to {0} already exists".format(fst))
else:
print("ERROR: Symbolic link to {0} unable to be created because: {1}".format(fst,str(e)))
raise e
for subject_label in subjects_to_analyze:
if glob(os.path.join(args.bids_dir, "sub-%s" % subject_label, "ses-*")):
T1s = glob(os.path.join(args.bids_dir,
"sub-%s" % subject_label,
"ses-*",
"anat",
"%s_T1w.nii*" % (ar_tpl)))
sessions = set([os.path.normpath(t1).split(os.sep)[-3].split("-")[-1] for t1 in T1s])
if args.session_label:
sessions = sessions.intersection(args.session_label)
if len(sessions) > 0 and longitudinal_study is True:
timepoints = ["sub-%s_ses-%s" % (subject_label, session_label) for session_label in sessions]
if 'cross-sectional' in args.steps:
# Running each session separately, prior to doing longitudinal pipeline
for session_label in sessions:
T1s = glob(os.path.join(args.bids_dir,
"sub-%s" % subject_label,
"ses-%s" % session_label,
"anat",
"%s_T1w.nii*" % (ar_tpl)))
input_args = ""
if three_T == 'true':
input_args += " -3T"
if args.qcache:
input_args += ' -qcache'
for T1 in T1s:
if (round(max(nibabel.load(T1).header.get_zooms()), 1) < 1.0 and args.hires_mode == "auto") or args.hires_mode == "enable":
input_args += " -hires"
input_args += " -i %s" % T1
T2s = glob(os.path.join(args.bids_dir, "sub-%s" % subject_label,
"ses-%s" % session_label, "anat",
"%s_T2w.nii*" % (ar_t2)))
FLAIRs = glob(os.path.join(args.bids_dir, "sub-%s" % subject_label,
"ses-%s" % session_label, "anat",
"%s_FLAIR.nii*" % (ar_t2)))
if args.refine_pial == "T2":
for T2 in T2s:
if (max(nibabel.load(T2).header.get_zooms()) < 1.2) | args.allow_lowresT2:
input_args += " " + " ".join(["-T2 %s" % T2])
input_args += " -T2pial"
elif args.refine_pial == "FLAIR":
for FLAIR in FLAIRs:
if (max(nibabel.load(FLAIR).header.get_zooms()) < 1.2) | args.allow_lowresT2:
input_args += " " + " ".join(["-FLAIR %s" % FLAIR])
input_args += " -FLAIRpial"
fsid = "sub-%s_ses-%s" % (subject_label, session_label)
stages = " ".join(["-" + stage for stage in args.stages])
cmd = "recon-all -subjid %s -sd %s %s %s -openmp %d" % (fsid,
output_dir,
input_args,
stages,
args.n_cpus)
resume_cmd = "recon-all -subjid %s -sd %s %s -openmp %d" % (fsid,
output_dir,
stages,
args.n_cpus)
if os.path.isfile(os.path.join(output_dir, fsid, "scripts/IsRunning.lh+rh")):
rmtree(os.path.join(output_dir, fsid))
print("DELETING OUTPUT SUBJECT DIR AND RE-RUNNING COMMAND:")
print(cmd)
run(cmd, env=env)
elif os.path.isfile(os.path.join(output_dir, fsid, "label/BA_exvivo.thresh.ctab")):
print("SUBJECT ALREADY SEGMENTED, SKIPPING")
elif os.path.exists(os.path.join(output_dir, fsid)):
print("SUBJECT DIR ALREADY EXISTS (without IsRunning.lh+rh), RUNNING COMMAND:")
print(resume_cmd)
run(resume_cmd, env=env)
else:
print(cmd)
run(cmd, env=env)
if 'template' in args.steps:
# creating a subject specific template
input_args = " ".join(["-tp %s" % tp for tp in timepoints])
fsid = "sub-%s" % subject_label
stages = " ".join(["-" + stage for stage in args.stages])
cmd = "recon-all -base %s -sd %s %s %s -openmp %d" % (fsid,
output_dir,
input_args,
stages,
args.n_cpus)
if os.path.isfile(os.path.join(output_dir, fsid, "scripts/IsRunning.lh+rh")):
rmtree(os.path.join(output_dir, fsid))
print("DELETING OUTPUT SUBJECT DIR AND RE-RUNNING COMMAND:")
print(cmd)
run(cmd, env=env)
elif os.path.isfile(os.path.join(output_dir, fsid, "label/BA_exvivo.thresh.ctab")):
print("TEMPLATE ALREADY CREATED, SKIPPING")
elif os.path.exists(os.path.join(output_dir, fsid)):
print("SUBJECT DIR ALREADY EXISTS (without IsRunning.lh+rh), RUNNING COMMAND:")
print(cmd)
run(cmd, env=env)
else:
print(cmd)
run(cmd, env=env)
if 'longitudinal' in args.steps:
for tp in timepoints:
# longitudinally process all timepoints
fsid = "sub-%s" % subject_label
stages = " ".join(["-" + stage for stage in args.stages])
cmd = "recon-all -long %s %s -sd %s %s -openmp %d" % (tp,
fsid,
output_dir,
stages,
args.n_cpus)
if os.path.isfile(os.path.join(output_dir, tp + ".long." + fsid, "scripts/IsRunning.lh+rh")):
rmtree(os.path.join(output_dir, tp + ".long." + fsid))
print("DELETING OUTPUT SUBJECT DIR AND RE-RUNNING COMMAND:")
print(cmd)
run(cmd, env=env)
elif os.path.isfile(os.path.join(output_dir, tp + ".long." + fsid, "label/BA_exvivo.thresh.ctab")):
print("SUBJECT ALREADY SEGMENTED, SKIPPING")
else:
print(cmd)
run(cmd, env=env)
elif len(sessions) > 0 and longitudinal_study is False:
# grab all T1s/T2s from multiple sessions and combine
T1s = glob(os.path.join(args.bids_dir,
"sub-%s" % subject_label,
"ses-*",
"anat",
"%s_T1w.nii*" % (ar_tpl)))
input_args = ""
if three_T == 'true':
input_args += " -3T"
if args.qcache:
input_args += " -qcache"
for T1 in T1s:
if (round(max(nibabel.load(T1).header.get_zooms()), 1) < 1.0 and args.hires_mode == "auto") or args.hires_mode == "enable":
input_args += " -hires"
input_args += " -i %s" % T1
T2s = glob(os.path.join(args.bids_dir,
"sub-%s" % subject_label,
"ses-*",
"anat",
"%s_T2w.nii*" % (ar_t2)))
FLAIRs = glob(os.path.join(args.bids_dir,
"sub-%s" % subject_label,
"ses-*",
"anat",
"%s_FLAIR.nii*" % (ar_t2)))
if args.refine_pial == "T2":
for T2 in T2s:
if (max(nibabel.load(T2).header.get_zooms()) < 1.2) | args.allow_lowresT2:
input_args += " " + " ".join(["-T2 %s" % T2])
input_args += " -T2pial"
elif args.refine_pial == "FLAIR":
for FLAIR in FLAIRs:
if (max(nibabel.load(FLAIR).header.get_zooms()) < 1.2) | args.allow_lowresT2:
input_args += " " + " ".join(["-FLAIR %s" % FLAIR])
input_args += " -FLAIRpial"
fsid = "sub-%s" % subject_label
stages = " ".join(["-" + stage for stage in args.stages])
cmd = "recon-all -subjid %s -sd %s %s %s -openmp %d" % (fsid,
output_dir,
input_args,
stages,
args.n_cpus)
resume_cmd = "recon-all -subjid %s -sd %s %s -openmp %d" % (fsid,
output_dir,
stages,
args.n_cpus)
if os.path.isfile(os.path.join(output_dir, fsid, "scripts/IsRunning.lh+rh")):
rmtree(os.path.join(output_dir, fsid))
print("DELETING OUTPUT SUBJECT DIR AND RE-RUNNING COMMAND:")
print(cmd)
run(cmd, env=env)
elif os.path.isfile(os.path.join(output_dir, fsid, "label/BA_exvivo.thresh.ctab")):
print("SUBJECT ALREADY SEGMENTED, SKIPPING")
elif os.path.exists(os.path.join(output_dir, fsid)):
print("SUBJECT DIR ALREADY EXISTS (without IsRunning.lh+rh), RUNNING COMMAND:")
print(resume_cmd)
run(resume_cmd, env=env)
else:
print(cmd)
run(cmd, env=env)
else:
print("SKIPPING SUBJECT %s (no valid session)." % subject_label)
else:
# grab all T1s/T2s from single session (no ses-* directories)
T1s = glob(os.path.join(args.bids_dir,
"sub-%s" % subject_label,
"anat",
"%s_T1w.nii*" % (ar_tpl)))
if not T1s:
print("No T1w nii files found for subject %s. Skipping subject." % subject_label)
continue
input_args = ""
if three_T == 'true':
input_args += " -3T"
if args.qcache:
input_args += " -qcache"
for T1 in T1s:
if (round(max(nibabel.load(T1).header.get_zooms()), 1) < 1.0 and args.hires_mode == "auto") or args.hires_mode == "enable":
input_args += " -hires"
input_args += " -i %s" % T1
T2s = glob(os.path.join(args.bids_dir, "sub-%s" % subject_label, "anat",
"%s_T2w.nii*" % (ar_t2)))
FLAIRs = glob(os.path.join(args.bids_dir, "sub-%s" % subject_label, "anat",
"%s_FLAIR.nii*" % (ar_t2)))
if args.refine_pial == "T2":
for T2 in T2s:
if max(nibabel.load(T2).header.get_zooms()) < 1.2:
input_args += " " + " ".join(["-T2 %s" % T2])
input_args += " -T2pial"
elif args.refine_pial == "FLAIR":
for FLAIR in FLAIRs:
if max(nibabel.load(FLAIR).header.get_zooms()) < 1.2:
input_args += " " + " ".join(["-FLAIR %s" % FLAIR])
input_args += " -FLAIRpial"
fsid = "sub-%s" % subject_label
stages = " ".join(["-" + stage for stage in args.stages])
cmd = "recon-all -subjid %s -sd %s %s %s -openmp %d" % (fsid,
output_dir,
input_args,
stages,
args.n_cpus)
resume_cmd = "recon-all -subjid %s -sd %s %s -openmp %d" % (fsid,
output_dir,
stages,
args.n_cpus)
if os.path.isfile(os.path.join(output_dir, fsid, "scripts/IsRunning.lh+rh")):
rmtree(os.path.join(output_dir, fsid))
print("DELETING OUTPUT SUBJECT DIR AND RE-RUNNING COMMAND:")
print(cmd)
run(cmd, env=env)
elif os.path.isfile(os.path.join(output_dir, fsid, "label/BA_exvivo.thresh.ctab")):
print("SUBJECT ALREADY SEGMENTED, SKIPPING")
elif os.path.exists(os.path.join(output_dir, fsid)):
print("SUBJECT DIR ALREADY EXISTS (without IsRunning.lh+rh), RUNNING COMMAND:")
print(resume_cmd)
run(resume_cmd, env=env)
else:
print(cmd)
run(cmd, env=env)
elif args.analysis_level == "group1": # running group level
if len(subjects_to_analyze) > 1:
# generate study specific template
fsids = ["sub-%s" % s for s in subjects_to_analyze]
# skipping volumetric average due to https://www.mail-archive.com/[email protected]/msg51822.html
cmd = "make_average_subject --no-symlink --no-vol --out " + args.template_name + " --subjects " + " ".join(fsids)
print(cmd)
if os.path.exists(os.path.join(output_dir, args.template_name)):
rmtree(os.path.join(output_dir, args.template_name))
run(cmd, env={"SUBJECTS_DIR": output_dir, 'FS_LICENSE': args.license_file})
for subject_label in subjects_to_analyze:
for hemi in ["lh", "rh"]:
tif_file = os.path.join(output_dir, args.template_name, hemi+".reg.template.tif")
fsid = "sub-%s" % subject_label
sphere_file = os.path.join(output_dir, fsid, "surf", hemi+".sphere")
reg_file = os.path.join(output_dir, fsid, "surf", hemi+".sphere.reg." + args.template_name)
cmd = "mris_register -curv %s %s %s" % (sphere_file, tif_file, reg_file)
run(cmd, env={"SUBJECTS_DIR": output_dir, 'FS_LICENSE': args.license_file})
else:
print("Only one subject included in the analysis. Skipping group1 level")
elif args.analysis_level == "group2": # running stats tables
table_dir = os.path.join(output_dir, "00_group2_stats_tables")
if not os.path.isdir(table_dir):
os.makedirs(table_dir)
print("Writing stats tables to %s." % table_dir)
# To make the group analysis independet of participant_level --multiple_sessions option, we are looking for
# *long* folders in the output_dir. If there exists one, we assume the study is longitudinal and we only
# consider *long* freesurfer folders. Else we search for sub-<subject_label> freesurfer folders. If subjects
# cannot be found in freesurfer folder, an exception is raised.
subjects = []
if glob(os.path.join(output_dir, "sub-*_ses-*.long.sub-*")):
for s in subjects_to_analyze:
fs_sessions = sorted(glob(os.path.join(output_dir, "sub-{s}_ses-*.long.sub-{s}*".format(s=s))))
if fs_sessions:
subjects += [os.path.basename(fssub) for fssub in fs_sessions]
else:
raise Exception("No freesurfer sessions found for %s in %s" % (s, output_dir))
else:
for s in subjects_to_analyze:
if os.path.isdir(os.path.join(output_dir, "sub-" + s)):
subjects.append("sub-" + s)
else:
raise Exception("No freesurfer subject found for %s in %s" % (s, output_dir))
subjects_str = " ".join(subjects)
# The call to python2 is only required if we're running Freesurfer 6, we'll need to check version
# and modify the calls accordingly.
if fsversion == 7:
cmd_start = ''
else:
cmd_start = 'python2 '
if len(subjects) > 0:
# create cortical stats
for p in args.parcellations:
for h in ["lh", "rh"]:
for m in args.measurements:
table_file = os.path.join(table_dir, "{h}.{p}.{m}.tsv".format(h=h, p=p, m=m))
if os.path.isfile(table_file):
warn("Replace old file %s" % table_file)
os.remove(table_file)
cmd = cmd_start + "`which aparcstats2table` --hemi {h} --subjects {subjects} --parc {p} --meas {m} " \
"--tablefile {table_file}".format(h=h, subjects=subjects_str, p=p, m=m,
table_file=table_file)
print("Creating cortical stats table for {h} {p} {m}".format(h=h, p=p, m=m))
run(cmd, env={"SUBJECTS_DIR": output_dir, 'FS_LICENSE': args.license_file})
# create subcortical stats
table_file = os.path.join(table_dir, "aseg.tsv")
if os.path.isfile(table_file):
warn("Replace old file %s" % table_file)
os.remove(table_file)
cmd = cmd_start + "`which asegstats2table` --subjects {subjects} --meas volume --tablefile {" \
"table_file}".format(subjects=subjects_str, table_file=table_file)
print("Creating subcortical stats table.")
run(cmd, env={"SUBJECTS_DIR": output_dir, 'FS_LICENSE': args.license_file})
print("\nTable export finished for %d subjects/sessions." % len(subjects))
else:
print("\nNo subjects included in the analysis. Skipping group2 level stats tables.")
# This extracts the euler numbers for the orig.nofix surfaces from the recon-all.log file
# see Rosen et al. (2017), https://www.biorxiv.org/content/early/2017/10/01/125161
def extract_euler(logfile):
with open(logfile) as fi:
logtext = fi.read()
p = re.compile(r"orig.nofix lheno =\s+(-?\d+), rheno =\s+(-?\d+)")
results = p.findall(logtext)
if len(results) != 1:
raise Exception("Euler number could not be extracted from {}".format(logfile))
lh_euler, rh_euler = results[0]
return int(lh_euler), int(rh_euler)
euler_out_file = os.path.join(table_dir, "euler.tsv")
print("Writing euler tables to %s." % euler_out_file)
# get freesurfer subjects
os.chdir(output_dir)
subjects = []
for s in subjects_to_analyze:
subjects += glob("sub-{}*".format(s))
# remove long subjects as they don't have orig.nofix surfaces,
# therefore no euler numbers
subjects = list(filter(lambda s: ".long.sub-" not in s, subjects))
if len(subjects) > 0:
df = pd.DataFrame([], columns=["subject", "lh_euler", "rh_euler"])
for subject in subjects:
logfile = os.path.join(output_dir, subject, "scripts/recon-all.log")
lh_euler, rh_euler = extract_euler(logfile)
df_subject = pd.DataFrame({"subject": [subject],
"lh_euler": [lh_euler],
"rh_euler": [rh_euler]},
columns=["subject", "lh_euler", "rh_euler"])
df = df.append(df_subject)
df["mean_euler_bh"] = df[["lh_euler", "rh_euler"]].mean(1)
df.sort_values("subject", inplace=True)
df.to_csv(euler_out_file, sep="\t", index=False)
else:
print("\nNo subjects included in the analysis. Skipping group2 level euler number table.")