-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmetric.py
52 lines (41 loc) · 1.31 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
__author__ = "Hao Bian"
import argparse
from pathlib import Path
import pandas as pd
import numpy as np
def make_parse():
parser = argparse.ArgumentParser()
parser.add_argument(
'--config', default=None, type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
# config args
args = make_parse()
# file address
log_path = 'logs/'
log_name = Path(args.config).parts[-2]
version_name = Path(args.config).name[:-5]
log_path = Path(log_path) / log_name / version_name
result_list = list(log_path.glob('*/result.csv'))
# save result_list
df = pd.read_csv(result_list[0], index_col=0)
metric_name = df.columns.values
metric = {}
for i in metric_name:
metric[i] = []
for result_dir in result_list:
result = pd.read_csv(result_dir, index_col=0)
for i in metric_name:
metric[i].append(result.loc[0, i])
metric_output = {}
for k, v in metric.items():
if 'test' in k:
k = k.split('_')[1]
metric_output[k] = str(round(np.mean(v), 4)) + \
'±' + str(round(np.std(v), 4))
for keys, values in metric_output.items():
print(f'{keys} = {values}')
print()
result_mean = pd.DataFrame([metric_output])
result_mean.to_csv(log_path / 'result_all.csv')