-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobotic_anything_gpt_online_eval.py
307 lines (277 loc) · 10.6 KB
/
robotic_anything_gpt_online_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import time
import json
import pickle
import logging
import torch
import cv2
import numpy as np
from PIL import Image, ImageDraw
from easydict import EasyDict
from vima_bench import *
from gym.wrappers import TimeLimit as _TimeLimit
from gym import Wrapper
import argparse
from engine_robotic import *
from visual_programming_prompt.robotic_exec_generation import *
from utils.data_prepare import *
from utils.common_utils import create_logger
def exception_handler(exception, logger, **kwargs):
logger.error("Exception: {}".format(exception))
task_info = {
"task_id": kwargs["task_id"],
"task": kwargs["whole_task"],
"exec": kwargs["exec_codes"],
"skip": True,
"success": False,
"exception": str(exception),
}
return task_info
class ResetFaultToleranceWrapper(Wrapper):
max_retries = 10
def __init__(self, env):
super().__init__(env)
def reset(self):
for _ in range(self.max_retries):
try:
return self.env.reset()
except:
current_seed = self.env.unwrapped.task.seed
self.env.global_seed = current_seed + 1
raise RuntimeError(
"Failed to reset environment after {} retries".format(self.max_retries)
)
class TimeLimitWrapper(_TimeLimit):
def __init__(self, env, bonus_steps: int = 0):
super().__init__(env, env.task.oracle_max_steps + bonus_steps)
@torch.no_grad()
def main(cfg, logger):
logger.info("cfg: {}".format(cfg))
debug_flag = cfg.debug_flag
assert cfg.partition in ALL_PARTITIONS
assert cfg.task in PARTITION_TO_SPECS["test"][cfg.partition]
seed = cfg.seed
env = TimeLimitWrapper(
ResetFaultToleranceWrapper(
make(
cfg.task,
modalities=["segm", "rgb"],
task_kwargs=PARTITION_TO_SPECS["test"][cfg.partition][cfg.task],
seed=seed,
render_prompt=False,
display_debug_window=debug_flag,
hide_arm_rgb=cfg.hide_arm,
)
),
bonus_steps=2,
)
single_model_flag = True if cfg.prompt_modal == "single" else False
result_folder = (
cfg.save_dir + "/" + cfg.partition + "/" + cfg.task + "/" + cfg.prompt_modal
)
if not os.path.exists(result_folder):
os.makedirs(result_folder)
eval_res_name = cfg.partition + "_" + cfg.task + ".json"
eval_result_file_path = os.path.join(result_folder, eval_res_name)
task_id = 0
all_infos = []
if cfg.reuse and os.path.exists(eval_result_file_path):
with open(eval_result_file_path, "r") as f:
all_infos = json.load(f)
while True:
env.global_seed = seed
obs = env.reset()
env.render()
meta_info = env.meta_info
prompt = env.prompt
prompt_assets = env.prompt_assets
whole_task, templates, task_setting = prepare_prompt(
prompt, prompt_assets, single_model=single_model_flag, task=cfg.task
)
task_id += 1
logger.info(f"==================Task {task_id}=========================")
logger.info(whole_task)
if not single_model_flag:
# get full task description for debug
whole_task_debug, _, _ = prepare_prompt(
prompt, prompt_assets, single_model=True, task=cfg.task
)
logger.info(f"The initial intention {whole_task_debug}")
if cfg.reuse and already_executed(all_infos, task_id, whole_task):
logger.info("Already executed, skip")
continue
# # Code block for saving demo
# a = input("Press s to save, c to continue, q to quit:")
# if a == "q":
# break
# elif a == "s":
# # save multi-modal data with the task description
# for ele in templates:
# img = np.asarray(templates[ele])
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# img = cv2.resize(img, (1024, 1024))
# img_name = str(task_id) + whole_task_debug + "_" + ele + ".png"
# img_path = os.path.join(result_folder, "single_obj")
# if not os.path.exists(img_path):
# os.makedirs(img_path)
# cv2.imwrite(os.path.join(img_path, img_name), img)
# elif a == "c":
# continue # skip
BOUNDS = meta_info["action_bounds"]
exec_codes = exec_steps(whole_task)
if task_id >= 150:
break
done = False
elapsed_steps = 0
ACTIONS = []
ACTION = None
IMAGE_INIT_top = np.transpose(obs["rgb"]["top"], (1, 2, 0))
IMAGE_INIT_front = np.transpose(obs["rgb"]["front"], (1, 2, 0))
while True:
top_img = np.transpose(obs["rgb"]["top"], (1, 2, 0))
IMAGE = top_img
info = None
for code in exec_codes.splitlines():
try:
if "EXE".lower() in code.lower() or len(code) < 4:
# the exe is done by the simulator
continue
elif "PickPlace".lower() in code.lower():
code = "PickPlace" + code.split("PickPlace")[-1]
ACTION = eval(code)
ACTIONS.append(ACTION)
elif "Actions".lower() in code.lower():
ACTIONS_ = eval(code.split("Actions=")[-1])
ACTIONS.extend(ACTIONS_)
else:
exec(code)
except Exception as e:
logger.info(f"Exception: {e} for {code}")
task_info = exception_handler(
e,
logger,
task_id=task_id,
whole_task=whole_task,
exec_codes=exec_codes,
)
all_infos.append(task_info)
with open(eval_result_file_path, "w") as f:
json.dump(all_infos, f)
done = True
break
while len(ACTIONS) > 0 and not done:
ACTION = ACTIONS.pop(0)
if isinstance(ACTION, tuple):
ACTION = ACTION[0]
if not isinstance(ACTION, dict):
# this uses to skip the task, mainly due to the generated code is not correct
task_info = exception_handler(
"not a dict",
logger,
task_id=task_id,
whole_task=whole_task,
exec_codes=exec_codes,
)
all_infos.append(task_info)
with open(eval_result_file_path, "w") as f:
json.dump(all_infos, f)
break
obs, _, done, info = env.step(ACTION)
elapsed_steps += 1
if done and info:
task_info = {
"task_id": task_id,
"task": whole_task,
"exec": exec_codes,
"steps": elapsed_steps,
"success": info["success"],
"failure": info["failure"],
}
else:
task_info = {
"task_id": task_id,
"task": whole_task,
"exec": exec_codes,
"steps": elapsed_steps,
"success": False,
"failure": False,
}
logger.info(
f"task id: {task_info['task_id']} success: {task_info['success']}"
)
if cfg.reuse and task_id - 1 < len(all_infos):
all_infos[task_id - 1] = task_info
all_infos.append(task_info)
with open(eval_result_file_path, "w") as f:
json.dump(all_infos, f)
if debug_flag or (info and not info["success"]):
img_path = os.path.join(
result_folder, "imgs", f"{task_id}_{whole_task}_top.png"
)
if not os.path.exists(os.path.dirname(img_path)):
os.makedirs(os.path.dirname(img_path))
IMAGE_INIT_top = cv2.cvtColor(IMAGE_INIT_top, cv2.COLOR_RGB2BGR)
cv2.imwrite(img_path, IMAGE_INIT_top)
if cfg.task == "rearrange":
img_path = os.path.join(
result_folder, "imgs", f"{task_id}_scene.png"
)
cv2.imwrite(img_path, templates["scene"])
break
success_rate = sum([info["success"] for info in all_infos]) / len(all_infos)
logger.warning(msg="==================Evaluation Done=========================")
logger.info(cfg)
logger.info("Success rate: {}".format(success_rate))
env.env.close()
del env
# time.sleep(5)
if __name__ == "__main__":
prompt_modal = ["multi"]
# prompt_modal = ["multi", "single"]
tasks = [
"visual_manipulation",
"rotate",
"pick_in_order_then_restore",
"rearrange_then_restore",
"rearrange",
"scene_understanding",
]
partitions = [
"placement_generalization",
"combinatorial_generalization",
"novel_object_generalization",
]
save_dir = "output"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
seed = 42
hide_arm =False # False for demo usage, True for eval usage
for task in tasks:
for partition in partitions:
for modal in prompt_modal:
eval_cfg = {
"partition": partition,
"task": task,
"device": "cuda:0",
"prompt_modal": modal,
"reuse": False,
"save_dir": save_dir,
"debug_flag": True,
"hide_arm": hide_arm,
"seed": seed,
}
logger_file = (
save_dir
+ "/eval_on_seed_{}_hide_arm_{}_{}_{}_{}_modal.log".format(
eval_cfg["seed"],
eval_cfg["hide_arm"],
partition,
task,
modal,
)
)
if os.path.exists(path=logger_file):
os.remove(logger_file)
logger = create_logger(logger_file)
main(EasyDict(eval_cfg), logger)
del logger