-
Notifications
You must be signed in to change notification settings - Fork 0
/
database.cc
1967 lines (1718 loc) · 90 KB
/
database.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2014 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include "log.hh"
#include "lister.hh"
#include "database.hh"
#include "unimplemented.hh"
#include <seastar/core/future-util.hh>
#include "db/commitlog/commitlog_entry.hh"
#include "db/system_keyspace.hh"
#include "db/commitlog/commitlog.hh"
#include "db/config.hh"
#include "to_string.hh"
#include "query-result-writer.hh"
#include "cql3/column_identifier.hh"
#include <seastar/core/seastar.hh>
#include <seastar/core/sleep.hh>
#include <seastar/core/rwlock.hh>
#include <seastar/core/metrics.hh>
#include <seastar/core/execution_stage.hh>
#include <seastar/util/defer.hh>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include "sstables/sstables.hh"
#include "sstables/compaction.hh"
#include "sstables/remove.hh"
#include <boost/range/adaptor/transformed.hpp>
#include <boost/range/adaptor/map.hpp>
#include "locator/simple_snitch.hh"
#include <boost/algorithm/cxx11/all_of.hpp>
#include <boost/algorithm/cxx11/any_of.hpp>
#include <boost/function_output_iterator.hpp>
#include <boost/range/algorithm/heap_algorithm.hpp>
#include <boost/range/algorithm/remove_if.hpp>
#include <boost/range/algorithm/find.hpp>
#include <boost/range/algorithm/find_if.hpp>
#include <boost/range/algorithm/sort.hpp>
#include <boost/range/adaptor/map.hpp>
#include "frozen_mutation.hh"
#include "mutation_partition_applier.hh"
#include <seastar/core/do_with.hh>
#include "service/migration_manager.hh"
#include "service/storage_service.hh"
#include "message/messaging_service.hh"
#include "mutation_query.hh"
#include <seastar/core/fstream.hh>
#include <seastar/core/enum.hh>
#include "utils/latency.hh"
#include "schema_registry.hh"
#include "service/priority_manager.hh"
#include "cell_locking.hh"
#include "db/view/row_locking.hh"
#include "view_info.hh"
#include "memtable-sstable.hh"
#include "db/schema_tables.hh"
#include "db/query_context.hh"
#include "sstables/compaction_manager.hh"
#include "sstables/compaction_backlog_manager.hh"
#include "sstables/progress_monitor.hh"
#include "auth/common.hh"
#include "tracing/trace_keyspace_helper.hh"
#include "checked-file-impl.hh"
#include "disk-error-handler.hh"
#include "db/timeout_clock.hh"
#include "db/data_listeners.hh"
#include "distributed_loader.hh"
#include "user_types_metadata.hh"
#include <seastar/core/shared_ptr_incomplete.hh>
using namespace std::chrono_literals;
logging::logger dblog("database");
namespace seastar {
void
lw_shared_ptr_deleter<user_types_metadata>::dispose(user_types_metadata* o) {
delete o;
}
}
template
user_types_metadata*
seastar::internal::lw_shared_ptr_accessors<user_types_metadata, void>::to_value(seastar::lw_shared_ptr_counter_base*);
sstables::sstable::version_types get_highest_supported_format() {
if (service::get_local_storage_service().cluster_supports_mc_sstable()) {
return sstables::sstable::version_types::mc;
} else if (service::get_local_storage_service().cluster_supports_la_sstable()) {
return sstables::sstable::version_types::la;
} else {
return sstables::sstable::version_types::ka;
}
}
// Used for tests where the CF exists without a database object. We need to pass a valid
// dirty_memory manager in that case.
thread_local dirty_memory_manager default_dirty_memory_manager;
inline
flush_controller
make_flush_controller(db::config& cfg, seastar::scheduling_group sg, const ::io_priority_class& iop, std::function<double()> fn) {
if (cfg.memtable_flush_static_shares() > 0) {
return flush_controller(sg, iop, cfg.memtable_flush_static_shares());
}
return flush_controller(sg, iop, 50ms, cfg.virtual_dirty_soft_limit(), std::move(fn));
}
inline
std::unique_ptr<compaction_manager>
make_compaction_manager(db::config& cfg, database_config& dbcfg) {
if (cfg.compaction_static_shares() > 0) {
return std::make_unique<compaction_manager>(dbcfg.compaction_scheduling_group, service::get_local_compaction_priority(), dbcfg.available_memory, cfg.compaction_static_shares());
}
return std::make_unique<compaction_manager>(dbcfg.compaction_scheduling_group, service::get_local_compaction_priority(), dbcfg.available_memory);
}
const lw_shared_ptr<user_types_metadata>& keyspace_metadata::user_types() const {
return _user_types;
}
lw_shared_ptr<keyspace_metadata>
keyspace_metadata::new_keyspace(sstring name,
sstring strategy_name,
std::map<sstring, sstring> options,
bool durables_writes,
std::vector<schema_ptr> cf_defs)
{
return ::make_lw_shared<keyspace_metadata>(name, strategy_name, options, durables_writes, cf_defs);
}
void keyspace_metadata::add_user_type(const user_type ut) {
_user_types->add_type(ut);
}
void keyspace_metadata::remove_user_type(const user_type ut) {
_user_types->remove_type(ut);
}
keyspace::keyspace(lw_shared_ptr<keyspace_metadata> metadata, config cfg)
: _metadata(std::move(metadata))
, _config(std::move(cfg))
{}
lw_shared_ptr<keyspace_metadata> keyspace::metadata() const {
return _metadata;
}
void keyspace::add_or_update_column_family(const schema_ptr& s) {
_metadata->add_or_update_column_family(s);
}
void keyspace::add_user_type(const user_type ut) {
_metadata->add_user_type(ut);
}
void keyspace::remove_user_type(const user_type ut) {
_metadata->remove_user_type(ut);
}
utils::UUID database::empty_version = utils::UUID_gen::get_name_UUID(bytes{});
database::database() : database(db::config(), database_config())
{}
database::database(const db::config& cfg, database_config dbcfg)
: _stats(make_lw_shared<db_stats>())
, _cl_stats(std::make_unique<cell_locker_stats>())
, _cfg(std::make_unique<db::config>(cfg))
// Allow system tables a pool of 10 MB memory to write, but never block on other regions.
, _system_dirty_memory_manager(*this, 10 << 20, cfg.virtual_dirty_soft_limit(), default_scheduling_group())
, _dirty_memory_manager(*this, dbcfg.available_memory * 0.45, cfg.virtual_dirty_soft_limit(), dbcfg.statement_scheduling_group)
, _streaming_dirty_memory_manager(*this, dbcfg.available_memory * 0.10, cfg.virtual_dirty_soft_limit(), dbcfg.streaming_scheduling_group)
, _dbcfg(dbcfg)
, _memtable_controller(make_flush_controller(*_cfg, dbcfg.memtable_scheduling_group, service::get_local_memtable_flush_priority(), [this, limit = float(_dirty_memory_manager.throttle_threshold())] {
auto backlog = (_dirty_memory_manager.virtual_dirty_memory()) / limit;
if (_dirty_memory_manager.has_extraneous_flushes_requested()) {
backlog = std::max(backlog, _memtable_controller.backlog_of_shares(200));
}
return backlog;
}))
, _read_concurrency_sem(max_count_concurrent_reads,
max_memory_concurrent_reads(),
max_inactive_queue_length(),
[this] {
++_stats->sstable_read_queue_overloaded;
return std::make_exception_ptr(std::runtime_error("sstable inactive read queue overloaded"));
})
// No timeouts or queue length limits - a failure here can kill an entire repair.
// Trust the caller to limit concurrency.
, _streaming_concurrency_sem(max_count_streaming_concurrent_reads, max_memory_streaming_concurrent_reads())
, _system_read_concurrency_sem(max_count_system_concurrent_reads, max_memory_system_concurrent_reads())
, _data_query_stage("data_query", &column_family::query)
, _mutation_query_stage()
, _apply_stage("db_apply", &database::do_apply)
, _version(empty_version)
, _compaction_manager(make_compaction_manager(*_cfg, dbcfg))
, _enable_incremental_backups(cfg.incremental_backups())
, _querier_cache(_read_concurrency_sem, dbcfg.available_memory * 0.04)
, _large_data_handler(std::make_unique<db::cql_table_large_data_handler>(_cfg->compaction_large_partition_warning_threshold_mb()*1024*1024,
_cfg->compaction_large_row_warning_threshold_mb()*1024*1024))
, _nop_large_data_handler(std::make_unique<db::nop_large_data_handler>())
, _result_memory_limiter(dbcfg.available_memory / 10)
, _data_listeners(std::make_unique<db::data_listeners>(*this))
{
local_schema_registry().init(*this); // TODO: we're never unbound.
setup_metrics();
_row_cache_tracker.set_compaction_scheduling_group(dbcfg.memory_compaction_scheduling_group);
dblog.debug("Row: max_vector_size: {}, internal_count: {}", size_t(row::max_vector_size), size_t(row::internal_count));
}
const db::extensions& database::extensions() const {
return get_config().extensions();
}
void backlog_controller::adjust() {
auto backlog = _current_backlog();
if (backlog >= _control_points.back().input) {
update_controller(_control_points.back().output);
return;
}
// interpolate to find out which region we are. This run infrequently and there are a fixed
// number of points so a simple loop will do.
size_t idx = 1;
while ((idx < _control_points.size() - 1) && (_control_points[idx].input < backlog)) {
idx++;
}
control_point& cp = _control_points[idx];
control_point& last = _control_points[idx - 1];
float result = last.output + (backlog - last.input) * (cp.output - last.output)/(cp.input - last.input);
update_controller(result);
}
float backlog_controller::backlog_of_shares(float shares) const {
size_t idx = 1;
while ((idx < _control_points.size() - 1) && (_control_points[idx].output < shares)) {
idx++;
}
const control_point& cp = _control_points[idx];
const control_point& last = _control_points[idx - 1];
// Compute the inverse function of the backlog in the interpolation interval that we fall
// into.
//
// The formula for the backlog inside an interpolation point is y = a + bx, so the inverse
// function is x = (y - a) / b
return last.input + (shares - last.output) * (cp.input - last.input) / (cp.output - last.output);
}
void backlog_controller::update_controller(float shares) {
_scheduling_group.set_shares(shares);
if (!_inflight_update.available()) {
return; // next timer will fix it
}
_inflight_update = engine().update_shares_for_class(_io_priority, uint32_t(shares));
}
void
dirty_memory_manager::setup_collectd(sstring namestr) {
namespace sm = seastar::metrics;
_metrics.add_group("memory", {
sm::make_gauge(namestr + "_dirty_bytes", [this] { return real_dirty_memory(); },
sm::description("Holds the current size of a all non-free memory in bytes: used memory + released memory that hasn't been returned to a free memory pool yet. "
"Total memory size minus this value represents the amount of available memory. "
"If this value minus virtual_dirty_bytes is too high then this means that the dirty memory eviction lags behind.")),
sm::make_gauge(namestr +"_virtual_dirty_bytes", [this] { return virtual_dirty_memory(); },
sm::description("Holds the size of used memory in bytes. Compare it to \"dirty_bytes\" to see how many memory is wasted (neither used nor available).")),
});
}
static const metrics::label class_label("class");
void
database::setup_metrics() {
_dirty_memory_manager.setup_collectd("regular");
_system_dirty_memory_manager.setup_collectd("system");
_streaming_dirty_memory_manager.setup_collectd("streaming");
namespace sm = seastar::metrics;
auto user_label_instance = class_label("user");
auto streaming_label_instance = class_label("streaming");
auto system_label_instance = class_label("system");
_metrics.add_group("memory", {
sm::make_gauge("dirty_bytes", [this] { return _dirty_memory_manager.real_dirty_memory() + _system_dirty_memory_manager.real_dirty_memory() + _streaming_dirty_memory_manager.real_dirty_memory(); },
sm::description("Holds the current size of all (\"regular\", \"system\" and \"streaming\") non-free memory in bytes: used memory + released memory that hasn't been returned to a free memory pool yet. "
"Total memory size minus this value represents the amount of available memory. "
"If this value minus virtual_dirty_bytes is too high then this means that the dirty memory eviction lags behind.")),
sm::make_gauge("virtual_dirty_bytes", [this] { return _dirty_memory_manager.virtual_dirty_memory() + _system_dirty_memory_manager.virtual_dirty_memory() + _streaming_dirty_memory_manager.virtual_dirty_memory(); },
sm::description("Holds the size of all (\"regular\", \"system\" and \"streaming\") used memory in bytes. Compare it to \"dirty_bytes\" to see how many memory is wasted (neither used nor available).")),
});
_metrics.add_group("memtables", {
sm::make_gauge("pending_flushes", _cf_stats.pending_memtables_flushes_count,
sm::description("Holds the current number of memtables that are currently being flushed to sstables. "
"High value in this metric may be an indication of storage being a bottleneck.")),
sm::make_gauge("pending_flushes_bytes", _cf_stats.pending_memtables_flushes_bytes,
sm::description("Holds the current number of bytes in memtables that are currently being flushed to sstables. "
"High value in this metric may be an indication of storage being a bottleneck.")),
});
_metrics.add_group("database", {
sm::make_gauge("requests_blocked_memory_current", [this] { return _dirty_memory_manager.region_group().blocked_requests(); },
sm::description(
seastar::format("Holds the current number of requests blocked due to reaching the memory quota ({}B). "
"Non-zero value indicates that our bottleneck is memory and more specifically - the memory quota allocated for the \"database\" component.", _dirty_memory_manager.throttle_threshold()))),
sm::make_derive("requests_blocked_memory", [this] { return _dirty_memory_manager.region_group().blocked_requests_counter(); },
sm::description(seastar::format("Holds the current number of requests blocked due to reaching the memory quota ({}B). "
"Non-zero value indicates that our bottleneck is memory and more specifically - the memory quota allocated for the \"database\" component.", _dirty_memory_manager.throttle_threshold()))),
sm::make_derive("clustering_filter_count", _cf_stats.clustering_filter_count,
sm::description("Counts bloom filter invocations.")),
sm::make_derive("clustering_filter_sstables_checked", _cf_stats.sstables_checked_by_clustering_filter,
sm::description("Counts sstables checked after applying the bloom filter. "
"High value indicates that bloom filter is not very efficient.")),
sm::make_derive("clustering_filter_fast_path_count", _cf_stats.clustering_filter_fast_path_count,
sm::description("Counts number of times bloom filtering short cut to include all sstables when only one full range was specified.")),
sm::make_derive("clustering_filter_surviving_sstables", _cf_stats.surviving_sstables_after_clustering_filter,
sm::description("Counts sstables that survived the clustering key filtering. "
"High value indicates that bloom filter is not very efficient and still have to access a lot of sstables to get data.")),
sm::make_derive("dropped_view_updates", _cf_stats.dropped_view_updates,
sm::description("Counts the number of view updates that have been dropped due to cluster overload. ")),
sm::make_derive("view_building_paused", _cf_stats.view_building_paused,
sm::description("Counts the number of times view building process was paused (e.g. due to node unavailability). ")),
sm::make_derive("total_writes", _stats->total_writes,
sm::description("Counts the total number of successful write operations performed by this shard.")),
sm::make_derive("total_writes_failed", _stats->total_writes_failed,
sm::description("Counts the total number of failed write operations. "
"A sum of this value plus total_writes represents a total amount of writes attempted on this shard.")),
sm::make_derive("total_writes_timedout", _stats->total_writes_timedout,
sm::description("Counts write operations failed due to a timeout. A positive value is a sign of storage being overloaded.")),
sm::make_derive("total_reads", _stats->total_reads,
sm::description("Counts the total number of successful reads on this shard.")),
sm::make_derive("total_reads_failed", _stats->total_reads_failed,
sm::description("Counts the total number of failed read operations. "
"Add the total_reads to this value to get the total amount of reads issued on this shard.")),
sm::make_current_bytes("view_update_backlog", [this] { return get_view_update_backlog().current; },
sm::description("Holds the current size in bytes of the pending view updates for all tables")),
sm::make_derive("querier_cache_lookups", _querier_cache.get_stats().lookups,
sm::description("Counts querier cache lookups (paging queries)")),
sm::make_derive("querier_cache_misses", _querier_cache.get_stats().misses,
sm::description("Counts querier cache lookups that failed to find a cached querier")),
sm::make_derive("querier_cache_drops", _querier_cache.get_stats().drops,
sm::description("Counts querier cache lookups that found a cached querier but had to drop it due to position mismatch")),
sm::make_derive("querier_cache_time_based_evictions", _querier_cache.get_stats().time_based_evictions,
sm::description("Counts querier cache entries that timed out and were evicted.")),
sm::make_derive("querier_cache_resource_based_evictions", _querier_cache.get_stats().resource_based_evictions,
sm::description("Counts querier cache entries that were evicted to free up resources "
"(limited by reader concurency limits) necessary to create new readers.")),
sm::make_derive("querier_cache_memory_based_evictions", _querier_cache.get_stats().memory_based_evictions,
sm::description("Counts querier cache entries that were evicted because the memory usage "
"of the cached queriers were above the limit.")),
sm::make_gauge("querier_cache_population", _querier_cache.get_stats().population,
sm::description("The number of entries currently in the querier cache.")),
sm::make_derive("sstable_read_queue_overloads", _stats->sstable_read_queue_overloaded,
sm::description("Counts the number of times the sstable read queue was overloaded. "
"A non-zero value indicates that we have to drop read requests because they arrive faster than we can serve them.")),
sm::make_gauge("active_reads", [this] { return max_count_concurrent_reads - _read_concurrency_sem.available_resources().count; },
sm::description("Holds the number of currently active read operations. "),
{user_label_instance}),
sm::make_gauge("active_reads_memory_consumption", [this] { return max_memory_concurrent_reads() - _read_concurrency_sem.available_resources().memory; },
sm::description(seastar::format("Holds the amount of memory consumed by currently active read operations. "
"If this value gets close to {} we are likely to start dropping new read requests. "
"In that case sstable_read_queue_overloads is going to get a non-zero value.", max_memory_concurrent_reads())),
{user_label_instance}),
sm::make_gauge("queued_reads", [this] { return _read_concurrency_sem.waiters(); },
sm::description("Holds the number of currently queued read operations."),
{user_label_instance}),
sm::make_gauge("paused_reads", _read_concurrency_sem.get_inactive_read_stats().population,
sm::description("The number of currently active reads that are temporarily paused."),
{user_label_instance}),
sm::make_derive("paused_reads_permit_based_evictions", _read_concurrency_sem.get_inactive_read_stats().permit_based_evictions,
sm::description("The number of paused reads evicted to free up permits."
" Permits are required for new reads to start, and the database will evict paused reads (if any)"
" to be able to admit new ones, if there is a shortage of permits."),
{user_label_instance}),
sm::make_gauge("active_reads", [this] { return max_count_streaming_concurrent_reads - _streaming_concurrency_sem.available_resources().count; },
sm::description("Holds the number of currently active read operations issued on behalf of streaming "),
{streaming_label_instance}),
sm::make_gauge("active_reads_memory_consumption", [this] { return max_memory_streaming_concurrent_reads() - _streaming_concurrency_sem.available_resources().memory; },
sm::description(seastar::format("Holds the amount of memory consumed by currently active read operations issued on behalf of streaming "
"If this value gets close to {} we are likely to start dropping new read requests. "
"In that case sstable_read_queue_overloads is going to get a non-zero value.", max_memory_streaming_concurrent_reads())),
{streaming_label_instance}),
sm::make_gauge("queued_reads", [this] { return _streaming_concurrency_sem.waiters(); },
sm::description("Holds the number of currently queued read operations on behalf of streaming."),
{streaming_label_instance}),
sm::make_gauge("paused_reads", _streaming_concurrency_sem.get_inactive_read_stats().population,
sm::description("The number of currently ongoing streaming reads that are temporarily paused."),
{streaming_label_instance}),
sm::make_derive("paused_reads_permit_based_evictions", _streaming_concurrency_sem.get_inactive_read_stats().permit_based_evictions,
sm::description("The number of inactive streaming reads evicted to free up permits"
" Permits are required for new reads to start, and the database will evict paused reads (if any)"
" to be able to admit new ones, if there is a shortage of permits."),
{streaming_label_instance}),
sm::make_gauge("active_reads", [this] { return max_count_system_concurrent_reads - _system_read_concurrency_sem.available_resources().count; },
sm::description("Holds the number of currently active read operations from \"system\" keyspace tables. "),
{system_label_instance}),
sm::make_gauge("active_reads_memory_consumption", [this] { return max_memory_system_concurrent_reads() - _system_read_concurrency_sem.available_resources().memory; },
sm::description(seastar::format("Holds the amount of memory consumed by currently active read operations from \"system\" keyspace tables. "
"If this value gets close to {} we are likely to start dropping new read requests. "
"In that case sstable_read_queue_overloads is going to get a non-zero value.", max_memory_system_concurrent_reads())),
{system_label_instance}),
sm::make_gauge("queued_reads", [this] { return _system_read_concurrency_sem.waiters(); },
sm::description("Holds the number of currently queued read operations from \"system\" keyspace tables."),
{system_label_instance}),
sm::make_gauge("paused_reads", _system_read_concurrency_sem.get_inactive_read_stats().population,
sm::description("The number of currently ongoing system reads that are temporarily paused."),
{system_label_instance}),
sm::make_derive("paused_reads_permit_based_evictions", _system_read_concurrency_sem.get_inactive_read_stats().permit_based_evictions,
sm::description("The number of paused system reads evicted to free up permits"
" Permits are required for new reads to start, and the database will evict inactive reads (if any)"
" to be able to admit new ones, if there is a shortage of permits."),
{system_label_instance}),
sm::make_gauge("total_result_bytes", [this] { return get_result_memory_limiter().total_used_memory(); },
sm::description("Holds the current amount of memory used for results.")),
sm::make_derive("short_data_queries", _stats->short_data_queries,
sm::description("The rate of data queries (data or digest reads) that returned less rows than requested due to result size limiting.")),
sm::make_derive("short_mutation_queries", _stats->short_mutation_queries,
sm::description("The rate of mutation queries that returned less rows than requested due to result size limiting.")),
sm::make_derive("multishard_query_unpopped_fragments", _stats->multishard_query_unpopped_fragments,
sm::description("The total number of fragments that were extracted from the shard reader but were unconsumed by the query and moved back into the reader.")),
sm::make_derive("multishard_query_unpopped_bytes", _stats->multishard_query_unpopped_bytes,
sm::description("The total number of bytes that were extracted from the shard reader but were unconsumed by the query and moved back into the reader.")),
sm::make_derive("multishard_query_failed_reader_stops", _stats->multishard_query_failed_reader_stops,
sm::description("The number of times the stopping of a shard reader failed.")),
sm::make_derive("multishard_query_failed_reader_saves", _stats->multishard_query_failed_reader_saves,
sm::description("The number of times the saving of a shard reader failed.")),
sm::make_total_operations("counter_cell_lock_acquisition", _cl_stats->lock_acquisitions,
sm::description("The number of acquired counter cell locks.")),
sm::make_queue_length("counter_cell_lock_pending", _cl_stats->operations_waiting_for_lock,
sm::description("The number of counter updates waiting for a lock.")),
sm::make_counter("large_partition_exceeding_threshold", [this] { return _large_data_handler->stats().partitions_bigger_than_threshold; },
sm::description("Number of large partitions exceeding compaction_large_partition_warning_threshold_mb. "
"Large partitions have performance impact and should be avoided, check the documentation for details.")),
});
}
database::~database() {
_read_concurrency_sem.clear_inactive_reads();
_streaming_concurrency_sem.clear_inactive_reads();
_system_read_concurrency_sem.clear_inactive_reads();
}
void database::update_version(const utils::UUID& version) {
_version = version;
}
const utils::UUID& database::get_version() const {
return _version;
}
static future<>
do_parse_schema_tables(distributed<service::storage_proxy>& proxy, const sstring& _cf_name, std::function<future<> (db::schema_tables::schema_result_value_type&)> func) {
using namespace db::schema_tables;
auto cf_name = make_lw_shared<sstring>(_cf_name);
return db::system_keyspace::query(proxy, db::schema_tables::NAME, *cf_name).then([] (auto rs) {
auto names = std::set<sstring>();
for (auto& r : rs->rows()) {
auto keyspace_name = r.template get_nonnull<sstring>("keyspace_name");
names.emplace(keyspace_name);
}
return std::move(names);
}).then([&proxy, cf_name, func = std::move(func)] (std::set<sstring>&& names) mutable {
return parallel_for_each(names.begin(), names.end(), [&proxy, cf_name, func = std::move(func)] (sstring name) mutable {
if (is_system_keyspace(name)) {
return make_ready_future<>();
}
return read_schema_partition_for_keyspace(proxy, *cf_name, name).then([func, cf_name] (auto&& v) mutable {
return do_with(std::move(v), [func = std::move(func), cf_name] (auto& v) {
return func(v).then_wrapped([cf_name, &v] (future<> f) {
try {
f.get();
} catch (std::exception& e) {
dblog.error("Skipping: {}. Exception occurred when loading system table {}: {}", v.first, *cf_name, e.what());
}
});
});
});
});
});
}
future<> database::parse_system_tables(distributed<service::storage_proxy>& proxy) {
using namespace db::schema_tables;
return do_parse_schema_tables(proxy, db::schema_tables::KEYSPACES, [this] (schema_result_value_type &v) {
auto ksm = create_keyspace_from_schema_partition(v);
return create_keyspace(ksm);
}).then([&proxy, this] {
return do_parse_schema_tables(proxy, db::schema_tables::TYPES, [this, &proxy] (schema_result_value_type &v) {
auto&& user_types = create_types_from_schema_partition(v);
auto& ks = this->find_keyspace(v.first);
for (auto&& type : user_types) {
ks.add_user_type(type);
}
return make_ready_future<>();
});
}).then([&proxy, this] {
return do_parse_schema_tables(proxy, db::schema_tables::TABLES, [this, &proxy] (schema_result_value_type &v) {
return create_tables_from_tables_partition(proxy, v.second).then([this] (std::map<sstring, schema_ptr> tables) {
return parallel_for_each(tables.begin(), tables.end(), [this] (auto& t) {
return this->add_column_family_and_make_directory(t.second);
});
});
});
}).then([&proxy, this] {
return do_parse_schema_tables(proxy, db::schema_tables::VIEWS, [this, &proxy] (schema_result_value_type &v) {
return create_views_from_schema_partition(proxy, v.second).then([this] (std::vector<view_ptr> views) {
return parallel_for_each(views.begin(), views.end(), [this] (auto&& v) {
return this->add_column_family_and_make_directory(v);
});
});
});
});
}
future<>
database::init_commitlog() {
return db::commitlog::create_commitlog(db::commitlog::config::from_db_config(*_cfg, _dbcfg.available_memory)).then([this](db::commitlog&& log) {
_commitlog = std::make_unique<db::commitlog>(std::move(log));
_commitlog->add_flush_handler([this](db::cf_id_type id, db::replay_position pos) {
if (_column_families.count(id) == 0) {
// the CF has been removed.
_commitlog->discard_completed_segments(id);
return;
}
_column_families[id]->flush();
}).release(); // we have longer life time than CL. Ignore reg anchor
});
}
unsigned
database::shard_of(const dht::token& t) {
return dht::shard_of(t);
}
unsigned
database::shard_of(const mutation& m) {
return shard_of(m.token());
}
unsigned
database::shard_of(const frozen_mutation& m) {
// FIXME: This lookup wouldn't be necessary if we
// sent the partition key in legacy form or together
// with token.
schema_ptr schema = find_schema(m.column_family_id());
return shard_of(dht::global_partitioner().get_token(*schema, m.key(*schema)));
}
void database::add_keyspace(sstring name, keyspace k) {
if (_keyspaces.count(name) != 0) {
throw std::invalid_argument("Keyspace " + name + " already exists");
}
_keyspaces.emplace(std::move(name), std::move(k));
}
future<> database::update_keyspace(const sstring& name) {
auto& proxy = service::get_storage_proxy();
return db::schema_tables::read_schema_partition_for_keyspace(proxy, db::schema_tables::KEYSPACES, name).then([this, name](db::schema_tables::schema_result_value_type&& v) {
auto& ks = find_keyspace(name);
auto tmp_ksm = db::schema_tables::create_keyspace_from_schema_partition(v);
auto new_ksm = ::make_lw_shared<keyspace_metadata>(tmp_ksm->name(), tmp_ksm->strategy_name(), tmp_ksm->strategy_options(), tmp_ksm->durable_writes(),
boost::copy_range<std::vector<schema_ptr>>(ks.metadata()->cf_meta_data() | boost::adaptors::map_values), ks.metadata()->user_types());
ks.update_from(std::move(new_ksm));
return service::get_local_migration_manager().notify_update_keyspace(ks.metadata());
});
}
void database::drop_keyspace(const sstring& name) {
_keyspaces.erase(name);
}
void database::add_column_family(keyspace& ks, schema_ptr schema, column_family::config cfg) {
schema = local_schema_registry().learn(schema);
schema->registry_entry()->mark_synced();
lw_shared_ptr<column_family> cf;
if (cfg.enable_commitlog && _commitlog) {
cf = make_lw_shared<column_family>(schema, std::move(cfg), *_commitlog, *_compaction_manager, *_cl_stats, _row_cache_tracker);
} else {
cf = make_lw_shared<column_family>(schema, std::move(cfg), column_family::no_commitlog(), *_compaction_manager, *_cl_stats, _row_cache_tracker);
}
auto uuid = schema->id();
if (_column_families.count(uuid) != 0) {
throw std::invalid_argument("UUID " + uuid.to_sstring() + " already mapped");
}
auto kscf = std::make_pair(schema->ks_name(), schema->cf_name());
if (_ks_cf_to_uuid.count(kscf) != 0) {
throw std::invalid_argument("Column family " + schema->cf_name() + " exists");
}
ks.add_or_update_column_family(schema);
cf->start();
_column_families.emplace(uuid, std::move(cf));
_ks_cf_to_uuid.emplace(std::move(kscf), uuid);
if (schema->is_view()) {
find_column_family(schema->view_info()->base_id()).add_or_update_view(view_ptr(schema));
}
}
future<> database::add_column_family_and_make_directory(schema_ptr schema) {
auto& ks = find_keyspace(schema->ks_name());
add_column_family(ks, schema, ks.make_column_family_config(*schema, *this));
find_column_family(schema).get_index_manager().reload();
return ks.make_directory_for_column_family(schema->cf_name(), schema->id());
}
bool database::update_column_family(schema_ptr new_schema) {
column_family& cfm = find_column_family(new_schema->id());
bool columns_changed = !cfm.schema()->equal_columns(*new_schema);
auto s = local_schema_registry().learn(new_schema);
s->registry_entry()->mark_synced();
cfm.set_schema(s);
find_keyspace(s->ks_name()).metadata()->add_or_update_column_family(s);
if (s->is_view()) {
try {
find_column_family(s->view_info()->base_id()).add_or_update_view(view_ptr(s));
} catch (no_such_column_family&) {
// Update view mutations received after base table drop.
}
}
cfm.get_index_manager().reload();
return columns_changed;
}
void database::remove(const column_family& cf) {
auto s = cf.schema();
auto& ks = find_keyspace(s->ks_name());
_querier_cache.evict_all_for_table(s->id());
_column_families.erase(s->id());
ks.metadata()->remove_column_family(s);
_ks_cf_to_uuid.erase(std::make_pair(s->ks_name(), s->cf_name()));
if (s->is_view()) {
try {
find_column_family(s->view_info()->base_id()).remove_view(view_ptr(s));
} catch (no_such_column_family&) {
// Drop view mutations received after base table drop.
}
}
}
future<> database::drop_column_family(const sstring& ks_name, const sstring& cf_name, timestamp_func tsf, bool snapshot) {
auto uuid = find_uuid(ks_name, cf_name);
auto cf = _column_families.at(uuid);
remove(*cf);
cf->clear_views();
auto& ks = find_keyspace(ks_name);
return when_all_succeed(cf->await_pending_writes(), cf->await_pending_reads()).then([this, &ks, cf, tsf = std::move(tsf), snapshot] {
return truncate(ks, *cf, std::move(tsf), snapshot).finally([this, cf] {
return cf->stop();
});
}).finally([cf] {});
}
const utils::UUID& database::find_uuid(const sstring& ks, const sstring& cf) const {
try {
return _ks_cf_to_uuid.at(std::make_pair(ks, cf));
} catch (...) {
throw std::out_of_range("");
}
}
const utils::UUID& database::find_uuid(const schema_ptr& schema) const {
return find_uuid(schema->ks_name(), schema->cf_name());
}
keyspace& database::find_keyspace(const sstring& name) {
try {
return _keyspaces.at(name);
} catch (...) {
std::throw_with_nested(no_such_keyspace(name));
}
}
const keyspace& database::find_keyspace(const sstring& name) const {
try {
return _keyspaces.at(name);
} catch (...) {
std::throw_with_nested(no_such_keyspace(name));
}
}
bool database::has_keyspace(const sstring& name) const {
return _keyspaces.count(name) != 0;
}
std::vector<sstring> database::get_non_system_keyspaces() const {
std::vector<sstring> res;
for (auto const &i : _keyspaces) {
if (!is_system_keyspace(i.first)) {
res.push_back(i.first);
}
}
return res;
}
std::vector<lw_shared_ptr<column_family>> database::get_non_system_column_families() const {
return boost::copy_range<std::vector<lw_shared_ptr<column_family>>>(
get_column_families()
| boost::adaptors::map_values
| boost::adaptors::filtered([](const lw_shared_ptr<column_family>& cf) {
return !is_system_keyspace(cf->schema()->ks_name());
}));
}
column_family& database::find_column_family(const sstring& ks_name, const sstring& cf_name) {
try {
return find_column_family(find_uuid(ks_name, cf_name));
} catch (...) {
std::throw_with_nested(no_such_column_family(ks_name, cf_name));
}
}
const column_family& database::find_column_family(const sstring& ks_name, const sstring& cf_name) const {
try {
return find_column_family(find_uuid(ks_name, cf_name));
} catch (...) {
std::throw_with_nested(no_such_column_family(ks_name, cf_name));
}
}
column_family& database::find_column_family(const utils::UUID& uuid) {
try {
return *_column_families.at(uuid);
} catch (...) {
std::throw_with_nested(no_such_column_family(uuid));
}
}
const column_family& database::find_column_family(const utils::UUID& uuid) const {
try {
return *_column_families.at(uuid);
} catch (...) {
std::throw_with_nested(no_such_column_family(uuid));
}
}
bool database::column_family_exists(const utils::UUID& uuid) const {
return _column_families.count(uuid);
}
void
keyspace::create_replication_strategy(const std::map<sstring, sstring>& options) {
using namespace locator;
auto& ss = service::get_local_storage_service();
_replication_strategy =
abstract_replication_strategy::create_replication_strategy(
_metadata->name(), _metadata->strategy_name(),
ss.get_token_metadata(), options);
}
locator::abstract_replication_strategy&
keyspace::get_replication_strategy() {
return *_replication_strategy;
}
const locator::abstract_replication_strategy&
keyspace::get_replication_strategy() const {
return *_replication_strategy;
}
void
keyspace::set_replication_strategy(std::unique_ptr<locator::abstract_replication_strategy> replication_strategy) {
_replication_strategy = std::move(replication_strategy);
}
void keyspace::update_from(::lw_shared_ptr<keyspace_metadata> ksm) {
_metadata = std::move(ksm);
create_replication_strategy(_metadata->strategy_options());
}
static bool is_system_table(const schema& s) {
return s.ks_name() == db::system_keyspace::NAME || s.ks_name() == db::system_distributed_keyspace::NAME;
}
column_family::config
keyspace::make_column_family_config(const schema& s, const database& db) const {
column_family::config cfg;
const db::config& db_config = db.get_config();
for (auto& extra : _config.all_datadirs) {
cfg.all_datadirs.push_back(column_family_directory(extra, s.cf_name(), s.id()));
}
cfg.datadir = cfg.all_datadirs[0];
cfg.enable_disk_reads = _config.enable_disk_reads;
cfg.enable_disk_writes = _config.enable_disk_writes;
cfg.enable_commitlog = _config.enable_commitlog;
cfg.enable_cache = _config.enable_cache;
cfg.enable_dangerous_direct_import_of_cassandra_counters = _config.enable_dangerous_direct_import_of_cassandra_counters;
cfg.compaction_enforce_min_threshold = _config.compaction_enforce_min_threshold;
cfg.dirty_memory_manager = _config.dirty_memory_manager;
cfg.streaming_dirty_memory_manager = _config.streaming_dirty_memory_manager;
cfg.read_concurrency_semaphore = _config.read_concurrency_semaphore;
cfg.streaming_read_concurrency_semaphore = _config.streaming_read_concurrency_semaphore;
cfg.cf_stats = _config.cf_stats;
cfg.enable_incremental_backups = _config.enable_incremental_backups;
cfg.compaction_scheduling_group = _config.compaction_scheduling_group;
cfg.memory_compaction_scheduling_group = _config.memory_compaction_scheduling_group;
cfg.memtable_scheduling_group = _config.memtable_scheduling_group;
cfg.memtable_to_cache_scheduling_group = _config.memtable_to_cache_scheduling_group;
cfg.streaming_scheduling_group = _config.streaming_scheduling_group;
cfg.statement_scheduling_group = _config.statement_scheduling_group;
cfg.enable_metrics_reporting = db_config.enable_keyspace_column_family_metrics();
// avoid self-reporting
if (is_system_table(s)) {
cfg.large_data_handler = db.get_nop_large_data_handler();
} else {
cfg.large_data_handler = db.get_large_data_handler();
}
cfg.view_update_concurrency_semaphore = _config.view_update_concurrency_semaphore;
cfg.view_update_concurrency_semaphore_limit = _config.view_update_concurrency_semaphore_limit;
cfg.data_listeners = &db.data_listeners();
return cfg;
}
sstring
keyspace::column_family_directory(const sstring& name, utils::UUID uuid) const {
return column_family_directory(_config.datadir, name, uuid);
}
sstring
keyspace::column_family_directory(const sstring& base_path, const sstring& name, utils::UUID uuid) const {
auto uuid_sstring = uuid.to_sstring();
boost::erase_all(uuid_sstring, "-");
return format("{}/{}-{}", base_path, name, uuid_sstring);
}
future<>
keyspace::make_directory_for_column_family(const sstring& name, utils::UUID uuid) {
std::vector<sstring> cfdirs;
for (auto& extra : _config.all_datadirs) {
cfdirs.push_back(column_family_directory(extra, name, uuid));
}
return seastar::async([cfdirs = std::move(cfdirs)] {
for (auto& cfdir : cfdirs) {
io_check(recursive_touch_directory, cfdir).get();
}
io_check(touch_directory, cfdirs[0] + "/upload").get();
io_check(touch_directory, cfdirs[0] + "/staging").get();
});
}
no_such_keyspace::no_such_keyspace(const sstring& ks_name)
: runtime_error{format("Can't find a keyspace {}", ks_name)}
{
}
no_such_column_family::no_such_column_family(const utils::UUID& uuid)
: runtime_error{format("Can't find a column family with UUID {}", uuid)}
{
}
no_such_column_family::no_such_column_family(const sstring& ks_name, const sstring& cf_name)
: runtime_error{format("Can't find a column family {} in keyspace {}", cf_name, ks_name)}
{
}
column_family& database::find_column_family(const schema_ptr& schema) {
return find_column_family(schema->id());
}
const column_family& database::find_column_family(const schema_ptr& schema) const {
return find_column_family(schema->id());
}
using strategy_class_registry = class_registry<
locator::abstract_replication_strategy,
const sstring&,
locator::token_metadata&,
locator::snitch_ptr&,
const std::map<sstring, sstring>&>;
keyspace_metadata::keyspace_metadata(sstring name,
sstring strategy_name,
std::map<sstring, sstring> strategy_options,
bool durable_writes,
std::vector<schema_ptr> cf_defs)
: keyspace_metadata(std::move(name),
std::move(strategy_name),
std::move(strategy_options),
durable_writes,
std::move(cf_defs),
make_lw_shared<user_types_metadata>()) { }
keyspace_metadata::keyspace_metadata(sstring name,
sstring strategy_name,
std::map<sstring, sstring> strategy_options,
bool durable_writes,
std::vector<schema_ptr> cf_defs,
lw_shared_ptr<user_types_metadata> user_types)
: _name{std::move(name)}
, _strategy_name{strategy_class_registry::to_qualified_class_name(strategy_name.empty() ? "NetworkTopologyStrategy" : strategy_name)}
, _strategy_options{std::move(strategy_options)}
, _durable_writes{durable_writes}
, _user_types{std::move(user_types)}
{
for (auto&& s : cf_defs) {
_cf_meta_data.emplace(s->cf_name(), s);
}
}
void keyspace_metadata::validate() const {
using namespace locator;
auto& ss = service::get_local_storage_service();
abstract_replication_strategy::validate_replication_strategy(name(), strategy_name(), ss.get_token_metadata(), strategy_options());
}
std::vector<schema_ptr> keyspace_metadata::tables() const {
return boost::copy_range<std::vector<schema_ptr>>(_cf_meta_data
| boost::adaptors::map_values
| boost::adaptors::filtered([] (auto&& s) { return !s->is_view(); }));