-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathllama2_lora_tuning.py
153 lines (127 loc) · 5.65 KB
/
llama2_lora_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from transformers.integrations import TensorBoardCallback
from torch.utils.tensorboard import SummaryWriter
from transformers import TrainingArguments
from transformers import Trainer, HfArgumentParser
from transformers import LlamaTokenizer, AutoModelForCausalLM, LlamaForCausalLM
from transformers import DataCollatorForLanguageModeling
import torch
import torch.nn as nn
from peft import get_peft_model, LoraConfig, TaskType, PeftModel
from dataclasses import dataclass, field
import datasets
import os
from pprint import pprint as print
@dataclass
class FinetuneArguments:
model_version: str = field(default="chat")
tokenized_dataset: str = field(default=" ") # tokenized之后的数据集文件夹
train_size: int = field(default=1000) # train size
eval_size: int = field(default=500) # train size
lora_rank: int = field(default=8)
previous_lora_weights: str = field(default=None) # 如果要在前面的 LoRA 上继续训练,就设置一下之前的地址
no_prompt_loss: int = field(default=0) # 默认 prompt 参与loss计算
class CastOutputToFloat(nn.Sequential):
def forward(self, x):
return super().forward(x).to(torch.float32)
class ModifiedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(
input_ids=inputs["input_ids"],
labels=inputs["labels"],
)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
def save_model(self, output_dir=None, _internal_call=False):
# 因为交给Trainer的model实际上是PeftModel类型,所以这里的 save_pretrained 会直接使用PeftModel的保存方法
# 从而只保存 LoRA weights
self.model.save_pretrained(output_dir)
writer = SummaryWriter()
finetune_args, training_args = HfArgumentParser(
(FinetuneArguments, TrainingArguments)
).parse_args_into_dataclasses()
if finetune_args.model_version == 'base':
model_checkpoint = "/root/DCAI-share/llm/..."
elif finetune_args.model_version == 'chat':
model_checkpoint = "/root/DCAI-share/llm/Llama-2-7b-chat-hf"
print(f"*** Notice: Your are using `{model_checkpoint}` model! ***")
tokenizer = LlamaTokenizer.from_pretrained(model_checkpoint, trust_remote_code=True)
tokenizer.pad_token = tokenizer.unk_token
def my_data_collator(features: list) -> dict:
"""
这个 collator 会把 prompt 的部分给mask掉,使得只有 output 部分参与计算 loss
"""
len_ids = [len(feature["input_ids"]) for feature in features]
longest = max(len_ids)
input_ids = []
labels_list = []
for ids_l, feature in sorted(zip(len_ids, features), key=lambda x: -x[0]):
ids = feature["input_ids"]
seq_len = feature["seq_len"] # prompt length
labels = (
[-100] * (seq_len - 1) + ids[(seq_len - 1) :] + [-100] * (longest - ids_l)
)
ids = ids + [tokenizer.pad_token_id] * (longest - ids_l)
_ids = torch.LongTensor(ids)
labels_list.append(torch.LongTensor(labels))
input_ids.append(_ids)
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {
"input_ids": input_ids,
"labels": labels,
}
if finetune_args.no_prompt_loss:
print("*** If you see this message, ***")
print("*** it means: Prompt is not calculated in loss. ***")
data_collator = my_data_collator
else:
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer,mlm=False)
# load dataset
dataset = datasets.load_from_disk('data/tokenized_data/'+finetune_args.tokenized_dataset)
# dataset = datasets.load_from_disk(finetune_args.tokenized_dataset)
train_dataset = dataset.select(range(finetune_args.train_size)) # 取前 N 条训练
eval_dataset = dataset.select(list(range(len(dataset)))[-finetune_args.eval_size:]) # 取后 N 条验证
print(f"train: {len(train_dataset)}")
print(f"evaluation: {len(eval_dataset)}")
# init model
model = LlamaForCausalLM.from_pretrained(
model_checkpoint, load_in_8bit=False, trust_remote_code=True,
device_map="auto" # 模型不同层会被自动分配到不同GPU上进行计算
# device_map={'':torch.cuda.current_device()} # 艹,这个设置有bug,一个小小的baichaun在80G的卡都能爆,换成 auto 立马就好了
)
print(model.hf_device_map)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.lm_head = CastOutputToFloat(model.lm_head)
# setup peft
if finetune_args.previous_lora_weights == None:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetune_args.lora_rank,
lora_alpha=16,
lora_dropout=0.1,
#lora_dropout=0.1
target_modules = ["q_proj","k_proj","v_proj","o_proj","gate_proj","down_proj","up_proj"] # https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/sft_scripts_zh
)
model = get_peft_model(model, peft_config)
else:
model = PeftModel.from_pretrained(model, finetune_args.previous_lora_weights)
# see: https://github.com/huggingface/peft/issues/184
for name, param in model.named_parameters():
if 'lora' in name or 'Lora' in name:
param.requires_grad = True
# start train
model.save_pretrained(training_args.output_dir) # 因为adapter_config.json只能通过这个save_pretrained来生成,先这里生成一份,好在训练完之前就可以尝试中间的checkpoint
trainer = ModifiedTrainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
callbacks=[TensorBoardCallback(writer)],
data_collator=data_collator,
)
trainer.train()
writer.close()
# save model
model.save_pretrained(training_args.output_dir)