-
Notifications
You must be signed in to change notification settings - Fork 99
/
chatglm2_lora_tuning.py
172 lines (147 loc) · 7.01 KB
/
chatglm2_lora_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from transformers.integrations import TensorBoardCallback
from torch.utils.tensorboard import SummaryWriter
from transformers import TrainingArguments
from transformers import Trainer, HfArgumentParser
from transformers import AutoTokenizer, AutoModel, AutoConfig
from accelerate import init_empty_weights
import torch
import torch.nn as nn
from peft import get_peft_model, LoraConfig, TaskType
from dataclasses import dataclass, field
import datasets
import os
from pprint import pprint as print
model_path = "THUDM/chatglm2-6b"
model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# tokenizer.add_special_tokens({
# "eos_token": "</s>",
# "bos_token": "<sop>",
# "unk_token": "<unk>",
# })
@dataclass
class FinetuneArguments:
tokenized_dataset: str = field(default=" ") # tokenized之后的数据集文件夹
model_path: str = field(default=" ")
lora_rank: int = field(default=8)
class CastOutputToFloat(nn.Sequential):
def forward(self, x):
return super().forward(x).to(torch.float32)
def data_collator(features: list) -> dict:
len_ids = [len(feature["input_ids"]) for feature in features]
longest = max(len_ids)
input_ids = []
labels_list = []
for ids_l, feature in sorted(zip(len_ids, features), key=lambda x: -x[0]):
ids = feature["input_ids"]
seq_len = feature["seq_len"] # prompt length
labels = (
[-100] * (seq_len - 1) + ids[(seq_len - 1) :] + [-100] * (longest - ids_l)
)
ids = ids + [tokenizer.pad_token_id] * (longest - ids_l)
_ids = torch.LongTensor(ids)
labels_list.append(torch.LongTensor(labels))
input_ids.append(_ids)
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {
"input_ids": input_ids,
"labels": labels,
}
# 这里的 collator 主要参考了 https://github.com/mymusise/ChatGLM-Tuning/blob/master/finetune.py 中的写法
# 将 prompt 的部分的label也设置为了 -100,从而在训练时不纳入loss的计算
# 对比之下,我在 baichaun_lora_tuning.py 中,是直接使用 DataCollatorForLanguageModeling,prompt 也纳入了计算。
# 这两种方式孰优孰劣尚不得而知,欢迎在issue或discussion中讨论。
class ModifiedTrainer(Trainer):
# def compute_loss(self, model, inputs, return_outputs=False):
# return model(
# input_ids=inputs["input_ids"],
# labels=inputs["labels"],
# ).loss
def save_model(self, output_dir=None, _internal_call=False):
# 因为交给Trainer的model实际上是PeftModel类型,所以这里的 save_pretrained 会直接使用PeftModel的保存方法
# 从而只保存 LoRA weights
self.model.save_pretrained(output_dir)
# from transformers.trainer import TRAINING_ARGS_NAME
# os.makedirs(output_dir, exist_ok=True)
# torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
# saved_params = {
# k: v.to("cpu") for k, v in self.model.named_parameters() if v.requires_grad
# }
# torch.save(saved_params, os.path.join(output_dir, "adapter_model.bin"))
def main():
writer = SummaryWriter()
finetune_args, training_args = HfArgumentParser(
(FinetuneArguments, TrainingArguments)
).parse_args_into_dataclasses()
# load dataset
dataset = datasets.load_from_disk('data/tokenized_data/'+finetune_args.tokenized_dataset)
# dataset = dataset.select(range(10000))
print(f"\n{len(dataset)=}\n")
# init model
with init_empty_weights(): # 似乎没用
print('loading init model...')
model = AutoModel.from_pretrained(
model_path, trust_remote_code=True,
device_map="auto" # 模型不同层会被自动分配到不同GPU上进行计算
# device_map={'':torch.cuda.current_device()}
)
print(model.hf_device_map)
print(f'memory_allocated {torch.cuda.memory_allocated()}')
"""
设置了 device_map="auto" 之后
chatglm 1.0 的时候,lm_head会跟input_layer自动分配到同个 device,
chatglm 2.0 的时候,没有了 lm_head,有一个 output_layer,这个时候可能会分配到两个 device,导致计算loss的时候报错显示
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:2 and cuda:0!
一个解决办法是设置 device_map={'':torch.cuda.current_device()},进行数据并行,但是这样batchsize只能设置非常小,而且很占显存
另一个解决办法是: 手动把 output_layer 设置为跟 input 一样的 device
然后这里会加载两次模型,可以先加载,调整device_map之后,再把旧模型删掉:https://github.com/pytorch/pytorch/issues/37250#issuecomment-1622972872
"""
if torch.cuda.device_count() > 1:
model.hf_device_map['transformer.output_layer'] = model.hf_device_map['transformer.embedding']
new_hf_device_map = model.hf_device_map
model.cpu()
del model
torch.cuda.empty_cache()
print(f'memory_allocated {torch.cuda.memory_allocated()}')
print('loading real model...')
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device_map=new_hf_device_map)
print(model.hf_device_map)
"""
.gradient_checkpointing_enable()
.enable_input_require_grads()
.is_parallelizable
这三个都是 transformers 模型的函数/参数(见 transformers/modeling_utils.py 文件)
"""
model.gradient_checkpointing_enable()
# note: use gradient checkpointing to save memory at the expense of slower backward pass.
model.enable_input_require_grads()
# note: Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping the model weights fixed.
# See https://github.com/huggingface/transformers/blob/ee88ae59940fd4b2c8fc119373143d7a1175c651/src/transformers/modeling_utils.py#L1190
# setup peft
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetune_args.lora_rank,
target_modules= ['query_key_value'],
lora_alpha=32,
lora_dropout=0.1,
)
model = get_peft_model(model, peft_config)
print('==========print_trainable_parameters===========')
model.print_trainable_parameters()
# start train
model.save_pretrained(training_args.output_dir) # 因为adapter_config.json只能通过这个save_pretrained来生成,先这里生成一份,好在训练完之前就可以尝试中间的checkpoint
trainer = ModifiedTrainer(
model=model,
train_dataset=dataset,
args=training_args,
callbacks=[TensorBoardCallback(writer)],
data_collator=data_collator
)
trainer.train()
writer.close()
# save model
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()