-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathreadme.rmd
245 lines (174 loc) · 5.83 KB
/
readme.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
title: "airtabler"
output:
html_document:
keep_md: yes
---
Provides access to the [Airtable API](http://airtable.com/api)
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Install
```{r install, eval=FALSE}
devtools::install_github("bergant/airtabler")
```
## Setup
> After you've created and configured the schema of an Airtable base from the
graphical interface, your Airtable base will provide its own API to create,
read, update, and destroy records. - [airtable.com/api](http://airtable.com/api)
## Get and store the API key
Generate the airtable API key from your [Airtable account](http://airtable.com/account) page.
__airtabler__ functions will read the API key from
environment variable `AIRTABLE_API_KEY`. To start R session with the
initialized environvent variable create an `.Renviron` file in your home directory
with a line like this:
`AIRTABLE_API_KEY=your_api_key_here`
To check where your home is, type `path.expand("~")` in your R console.
## Usage
Create airtable base object:
```{r}
library(airtabler)
TravelBucketList <-
airtable(
base = "appIS8u9n73hzwE7R",
tables = c("Destinations", "Hotels", "Travel Partners")
)
```
_Note that you should replace the Airtable base identifiers and `record_id`s when running the examples._
### Get records
Use select function to get all records:
```{r get_records}
hotels <-
TravelBucketList$Hotels$select()
knitr::kable(hotels[, c("id","Name", "Stars", "Price/night")], format = "markdown")
```
Filter records with formula (see [formula field reference ](https://support.airtable.com/hc/en-us/articles/203255215-Formula-Field-Reference)).
```{r get_records_formula}
hotels <-
TravelBucketList$Hotels$select(filterByFormula = " ({Avg Review} > 8.5)" )
knitr::kable(hotels[, c("id","Name", "Stars", "Avg Review", "Price/night")], format = "markdown")
```
Sort data with sort parameter:
```{r get_records_sort}
hotels <-
TravelBucketList$Hotels$select(sort = list(
list(field="Avg Review", direction = "desc"),
list(field="Price/night", direction = "asc")
))
knitr::kable(hotels[, c("id","Name", "Stars", "Avg Review", "Price/night")], format = "markdown")
```
### Using page size and offset
Define page size with `pageSize`:
```{r offset}
hotels <- TravelBucketList$Hotels$select(pageSize = 3)
nrow(hotels)
```
Continue at offset, returned by previous select:
```{r}
hotels <- TravelBucketList$Hotels$select(offset = get_offset(hotels))
nrow(hotels)
```
To fetch all rows (even > 100 records) use `select_all`. The `select_all`
function will handle the offset and return the result as a single object.
```{r select_all}
hotels <- TravelBucketList$Hotels$select_all()
nrow(hotels)
```
Other optional arguments:
* __fields__ A list of fields to be returned (instead of all fields).
* __view__ The name or ID of the view, defined on the table.
* __maxRecord__ The maximum total number of records that will be returned.
### Retrieve a record
Add the `record_id` argument to get the details of a record:
```{r get_single}
radisson <-
TravelBucketList$Hotels$select(record_id = "recgKO7K15YyWEsdb")
str(radisson$fields, max.level = 1)
```
### Insert a record
Insert a new record with `insert` function (API returns all record data - including new record ID):
```{r insert}
record_data <- list(
Name = "New hotel",
`Price/night` = 200,
Stars = "****",
Amenities = c("Hiking", "Gym"),
Notes = "Just a sample record.\nWith extra line in notes."
)
new_hotel <-
TravelBucketList$Hotels$insert(record_data)
cat("Inserted a record with ID=", new_hotel$id, sep = "")
```
### Update a record
Update the price of the new hotel (API returns all record data):
```{r update}
new_hotel <-
TravelBucketList$Hotels$update(
record_id = new_hotel$id,
record_data = list(
`Price/night` = 120,
Notes = "Check out the price!!!"
)
)
cat("Updated a record with ID=", new_hotel$id, ". ",
"New price: ", new_hotel$fields$`Price/night`, sep = "")
```
### Delete a record
```{r delete}
TravelBucketList$Hotels$delete(new_hotel$id)
```
## Working with data frames
Standard Airtable API does not accept a table of records.
Functions `insert` and `update` accept a data.frame and
execute transactions (call Airtable API) row by row.
Insert records with a data frame:
```{r data.frames.insert}
two_records <-
data.frame(
Name = c("Sample1", "Sample2"),
`Price/night` = c(150, 180),
Stars = c("***", "****"),
Amenities = I(list(c("Wifi", "Pool"), c("Spa", "Laundry"))),
Notes = c("Foo", "Bar"),
check.names = FALSE,
stringsAsFactors = FALSE
)
new_records <-
TravelBucketList$Hotels$insert(two_records)
```
Update records with a data frame:
```{r data.frames.update}
# change records
record_ids <- sapply(new_records, function(x) x$id)
two_records$`Price/night` <- two_records$`Price/night` + 5
two_records$Stars <- "*****"
updated <-
TravelBucketList$Hotels$update(
record_id = record_ids,
record_data = two_records)
```
Delete multiple records:
```{r data.frames.delete}
# delete new records
record_ids <- sapply(new_records, function(x) x$id)
deleted <-
TravelBucketList$Hotels$delete(record_ids)
```
## Programming with airtabler
While having all airtable base tables and functions in one object
is handy in interactive mode, it is recommended to use primitive
functions for adding, reading, updating and deleting when programming
R packages:
```{r primitives}
travel_base <- "appIS8u9n73hzwE7R"
# read data
hotels <- air_select(travel_base, "Hotels")
# get one record
radisson <- air_select(travel_base, "Hotels", record_id = "recgKO7K15YyWEsdb")
# create
inserted <- air_insert(travel_base, "Hotels", record_data)
# update
updated <- air_update(travel_base, "Hotels", record_id = inserted$id, record_data)
# delete
deleted <- air_delete(travel_base, "Hotels", record_id = inserted$id)
```