-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathXBRLfiles.Rmd
301 lines (241 loc) · 9.62 KB
/
XBRLfiles.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
---
title: "Exploring XBRL files with R"
author: "Darko Bergant"
date: "Saturday, January 17, 2015"
output:
html_document:
keep_md: yes
toc: yes
---
#What is XBRL?
Extensible Business Reporting Language ([XBRL](https://www.xbrl.org/the-standard/what/)) is the open international standard for [digital business reporting](http://xbrl.squarespace.com), managed by a global not for profit consortium, [XBRL International](http://xbrl.org).
#XBRL Parser for R
Parsing XBRL is [not](https://www.xbrl.org/the-standard/how/getting-started-for-developers/) something you could do with your eyes closed.
Fortunately the [XBRL](http://cran.r-project.org/web/packages/XBRL) package by Roberto Bertolusso and Marek Kimel takes all the pain away.
To parse complete XBRL, use `xbrlDoAll` function.
It extracts xbrl instance and related schema files to a list of data frames.
```{r parse, message=FALSE, cache=TRUE}
library(XBRL)
inst <- "http://edgar.sec.gov/Archives/edgar/data/21344/000002134414000008/ko-20131231.xml"
options(stringsAsFactors = FALSE)
xbrl.vars <- xbrlDoAll(inst, cache.dir = "XBRLcache", prefix.out = NULL)
str(xbrl.vars, max.level = 1)
```
# XBRL Data Frames Structure
The data structure of the data frames is shown in the image below
![XBRL tables](img/xbrl_files.png)
All values are kept in the `fact` table (in the `fact` field, precisely).
The `element` table defines _what_ are these values (the XBRL _concepts_, e.g. “assets”, “liabilities”, “net income” etc.).
The `context` table defines the periods and other dimensions for which the values are reported.
With [dplyr](http://cran.r-project.org/web/packages/dplyr)'s `join` and `filter` it is quite easy to explore the data in interrelated tables.
For example, to extract revenue from the sale of goods we have to join the
*facts* (the numbers) with the *context* (periods, dimensions):
```{r sales, message=FALSE}
library(dplyr)
xbrl.vars$fact %>%
filter(elementId == "us-gaap_SalesRevenueGoodsNet") %>%
left_join(xbrl.vars$context, by = "contextId") %>%
filter(is.na(dimension1)) %>%
select(startDate, endDate, fact, unitId, elementId) %>%
(knitr::kable)(format = "markdown")
```
# Balance Sheet Example
## Select Statement
XBRL encapsulates several reports of different types:
```{r roleid, message=FALSE}
table(xbrl.vars$role$type)
```
To find all _statements_, filter roles by `type`:
```{r all_statements, message=FALSE, results='asis'}
htmlTable::htmlTable(data.frame(Statements=
with(
xbrl.vars$role[xbrl.vars$role$type=="Statement", ],
paste(roleId, "\n<br/>", definition, "\n<p/>")
)),
align = "l",
rnames = FALSE
)
```
## Presentation hierarchy
To find out which concepts are reported on specific financial statement component, we have to search the presentation tree from the top element.
```{r balance_sheet, message=FALSE}
library(tidyr)
library(dplyr)
# let's get the balace sheet
role_id <- "http://www.thecocacolacompany.com/role/ConsolidatedBalanceSheets"
# prepare presentation linkbase :
# filter by role_id an convert order to numeric
pres <-
xbrl.vars$presentation %>%
filter(roleId %in% role_id) %>%
mutate(order = as.numeric(order))
# start with top element of the presentation tree
pres_df <-
pres %>%
anti_join(pres, by = c("fromElementId" = "toElementId")) %>%
select(elementId = fromElementId)
# breadth-first search
while({
df1 <- pres_df %>%
na.omit() %>%
left_join( pres, by = c("elementId" = "fromElementId")) %>%
arrange(elementId, order) %>%
select(elementId, child = toElementId);
nrow(df1) > 0
})
{
# add each new level to data frame
pres_df <- pres_df %>% left_join(df1, by = "elementId")
names(pres_df) <- c(sprintf("level%d", 1:(ncol(pres_df)-1)), "elementId")
}
# add last level as special column (the hierarchy may not be uniformly deep)
pres_df["elementId"] <-
apply( t(pres_df), 2, function(x){tail( x[!is.na(x)], 1)})
pres_df["elOrder"] <- 1:nrow(pres_df)
# the final data frame structure is
str(pres_df, vec.len = 1 )
```
## Amounts and Contexts
Elements (or _concepts_ in XBRL terminology) of the balance sheet are now gathered in data frame with presentation hierarchy levels. To see the numbers we have to join the elements with numbers from `fact` table and periods from `context` table:
```{r results='asis'}
# join concepts with context, facts
pres_df_num <-
pres_df %>%
left_join(xbrl.vars$fact, by = "elementId") %>%
left_join(xbrl.vars$context, by = "contextId") %>%
filter(is.na(dimension1)) %>%
filter(!is.na(endDate)) %>%
select(elOrder, contains("level"), elementId, fact, decimals, endDate) %>%
mutate( fact = as.numeric(fact) * 10^as.numeric(decimals)) %>%
spread(endDate, fact ) %>%
arrange(elOrder)
library(pander)
pres_df_num %>%
select(elementId, contains("2013"), contains("2012")) %>%
pandoc.table(
style = "rmarkdown",
split.table = 200,
justify = c("left", "right", "right")
)
```
## Labels
Every concept in XBRL may have several labels (short name, description, documentation, etc.) perhaps in several languages. In presentation linkbase there is a hint (`preferredLabel`) which label should be used preferrably. Additionally the computed rows are emphasized.
```{r results='asis'}
# labels for our financial statement (role_id) in "en-US" language:
x_labels <-
xbrl.vars$presentation %>%
filter(roleId == role_id) %>%
select(elementId = toElementId, labelRole = preferredLabel) %>%
semi_join(pres_df_num, by = "elementId") %>%
left_join(xbrl.vars$label, by = c("elementId", "labelRole")) %>%
filter(lang == "en-US") %>%
select(elementId, labelString)
# calculated elements in this statement component
x_calc <- xbrl.vars$calculation %>%
filter(roleId == role_id) %>%
select(elementId = fromElementId, calcRoleId = arcrole) %>%
unique()
# join concepts and numbers with labels
balance_sheet_pretty <- pres_df_num %>%
left_join(x_labels, by = "elementId") %>%
left_join(x_calc, by = "elementId") %>%
select(labelString, contains("2013"), contains("2012"), calcRoleId)
names(balance_sheet_pretty)[1] <-
"CONDENSED CONSOLIDATED BALANCE SHEETS (mio USD $)"
names(balance_sheet_pretty)[2:3] <-
format(as.Date(names(balance_sheet_pretty)[2:3]), "%Y")
# rendering balance sheet
pandoc.table(
balance_sheet_pretty[,1:3],
style = "rmarkdown",
justify = c("left", "right", "right"),
split.table = 300,
big.mark = ",",
emphasize.strong.rows = which(!is.na(balance_sheet_pretty$calcRoleId))
)
```
## Calculation Hierarchy
XBRL includes three hierarchies of concepts: definition, presentation and
calculation. Hierarchies are stored as links in `definition`,
`presentation` and `calculation` tables. Columns `fromElementId` and
`toElementId` represent parent and child.
Sometimes it is easier to use calculation hierarchy
when it is reshaped into elements table with
explicit hierarchy position:
```{r results='asis'}
role_id <- "http://www.thecocacolacompany.com/role/ConsolidatedBalanceSheets"
relations <-
xbrl.vars$calculation %>%
filter(roleId == role_id) %>%
select(fromElementId, toElementId, order)
elements <-
data.frame(
elementId = with(relations, unique(c(fromElementId, toElementId))),
stringsAsFactors = FALSE
) %>%
left_join(xbrl.vars$element, by = c("elementId")) %>%
left_join(relations, by = c("elementId" = "toElementId")) %>%
left_join(xbrl.vars$label, by = c("elementId")) %>%
filter(labelRole == "http://www.xbrl.org/2003/role/label") %>%
transmute(elementId, parentId = fromElementId, order, balance, labelString)
# get top element(s) in hierarchy
level <- 1
df1 <- elements %>%
filter(is.na(parentId)) %>%
mutate(id = "") %>%
arrange(desc(balance))
# search the tree
while({
level_str <-
unname(unlist(lapply(split(df1$id, df1$id), function(x) {
sprintf("%s%02d", x, 1:length(x))
})))
elements[elements$elementId %in% df1$elementId, "level"] <- level
to_update <- elements[elements$elementId %in% df1$elementId, "elementId"]
elements[
#order(match(elements$elementId, to_update))[1:length(level_str)],
order(match(elements$elementId, df1$elementId))[1:length(level_str)],
"id"] <- level_str
df1 <- elements %>%
filter(parentId %in% df1$elementId) %>%
arrange(order) %>%
select(elementId, parentId) %>%
left_join(elements, by=c("parentId"="elementId")) %>%
arrange(id)
nrow(df1) > 0})
{
level <- level + 1
}
# order by hierarchy ID and mark terminal nodes
elements <-
elements %>%
dplyr::arrange_(~id) %>%
dplyr::mutate(
terminal = !elementId %in% parentId,
Element = paste(
substring(paste(rep(" ",10), collapse = ""), 1, (level-1)*2*6),
gsub("us-gaap_", "",elementId)
)
)
pandoc.table(
elements[, c("Element", "balance", "id")],
style = "rmarkdown",
justify = c("left", "left", "left"),
split.table = 300,
emphasize.strong.rows = which(elements$level == 1)
)
```
_Notice that TreasuryStockValue element has different balance side than its parent
element StockholdersEquity. In this case the element value should be deducted instead
of added to the total sum, when calculating (or validating) the value of its parent
concept._
# Related
## [finstr](https://github.com/bergant/finstr) package: financial statements in R
[finstr](https://github.com/bergant/finstr) package includes the
"data wrangling" functions needed to use the XBRL data.
It allows user to focus on financial statement analysis.
## [xbrlus](https://github.com/bergant/xbrlus) package: R interface to XBRL US API
XBRL US (http://xbrl.us/) provides
free access to their database via
[XBRL US API](https://github.com/xbrlus/data_analysis_toolkit/).
Package [xbrlus](https://github.com/bergant/xbrlus) is an R interface to this API.