-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnvml_reader.py
215 lines (155 loc) · 6.58 KB
/
nvml_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Reads GPU usage info from CSV file and plots it.
Saves the figure(s) as PNG file(s).
Usage: python nvml_reader.py -f nvml_20230531-214237.csv -s "2023-05-31 21:00" -e "2023-06-01 12:14"
Or, using the long form of the flags: python nvml_reader.py --filename nvml_20230531-214237.csv --start_time "2023-05-31 21:00" --end_time "2023-06-01 12:14"
"""
import argparse
import collections.abc
import pathlib
from dataclasses import dataclass, field
from typing import Tuple
import numpy as np
import pandas as pd
import pynvml
from horizontal_bars_figure import FigureHorizontalBars, Tick
def get_gpus_in_csv(path_to_csv, gpus_on_machine):
df = pd.read_csv(path_to_csv)
csv_uuids = tuple(df["gpu_uuid"].unique())
gpus_in_csv = list()
for gpu in gpus_on_machine:
if gpu.uuid in csv_uuids:
gpus_in_csv.append(gpu)
return GpuList(tuple(gpus_in_csv))
def min_len_unique_uuid(uuids):
"""Determine the minimum string length required for a UUID to be unique."""
def length_of_longest_string(list_of_strings):
return len(max(list_of_strings, key=len))
uuid_length = length_of_longest_string(uuids)
tmp = set()
for i in range(uuid_length):
tmp.clear()
for _id in uuids:
if _id[:i] in tmp:
break
else:
tmp.add(_id[:i])
else:
break
return i
def get_gpus_on_machine():
"""Populates the list of available GPUs on the machine."""
pynvml.nvmlInit()
gpu_count = pynvml.nvmlDeviceGetCount()
gpus_on_machine = list()
for gpu in range(gpu_count):
handle = pynvml.nvmlDeviceGetHandleByIndex(gpu)
uuid = pynvml.nvmlDeviceGetUUID(handle).decode("UTF-8")
mem_total = pynvml.nvmlDeviceGetMemoryInfo(handle).total / 1024 ** 2
enforced_power_limit = pynvml.nvmlDeviceGetEnforcedPowerLimit(handle) / 1000
device = GpuDevice(
uuid=uuid,
total_memory=int(mem_total),
power_limit=int(enforced_power_limit),
)
gpus_on_machine.append(device)
pynvml.nvmlShutdown()
return GpuList(tuple(gpus_on_machine))
@dataclass
class GpuDevice:
"""Stores GPU properties, per device."""
uuid: str # eg, "GPU-1dfe3b5c-79a0-0422-f0d0-b22c6ded0af0"
total_memory: int # MiB (Mebibyte)
power_limit: int # Watt
@dataclass
class GpuList(collections.abc.Sequence):
gpus: Tuple[GpuDevice]
short_uuid_len: int = field(init=False)
def __post_init__(self):
self.short_uuid_len = min_len_unique_uuid(list(gpu.uuid for gpu in self))
def __getitem__(self, key):
return self.gpus.__getitem__(key)
def __len__(self):
return self.gpus.__len__()
def uuid_series(df, uuid, column):
mask = df["gpu_uuid"].values == uuid
return df.loc[mask, column]
def resampled_time_index(df, freq="5T", rounding="30T"):
start_time = df.index[0].round(rounding)
end_time = df.index[-1].round(rounding)
return pd.date_range(start=start_time, end=end_time, freq=freq)
def reindex_time_series(series, new_index):
resampled = series.resample(new_index.freq).mean()
return resampled.reindex(new_index)
def generate_time_ticks(time_index, num_ticks=5):
tick_positions = np.linspace(0.0, 1.0, num_ticks)
start_time = time_index[0]
end_time = time_index[-1]
tick_labels = pd.date_range(start=start_time, end=end_time, periods=num_ticks)
ticks = list()
for position, label in zip(tick_positions, tick_labels):
ticks.append(Tick(position, label.strftime("%H:%M")))
return tuple(ticks)
def generate_y_labels(gpus_in_csv):
s_uuid = list()
for gpu in gpus_in_csv:
s_uuid.append(gpu.uuid[: gpus_in_csv.short_uuid_len])
return tuple(s_uuid)
def Y_matrix(gpus_in_csv, df, time_index, quantity):
normalized_by = {
"used_gpu_memory_MiB": "total_memory",
"used_power_W": "power_limit",
}[quantity]
Y = np.zeros(shape=(len(gpus_in_csv), time_index.size))
for count, gpu in enumerate(gpus_in_csv):
s = uuid_series(df, gpu.uuid, quantity)
r = reindex_time_series(s, time_index)
Y[count] = r / getattr(gpu, normalized_by)
return Y
def main():
"""Main entry point."""
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--filename', help="The CSV file name", required=True)
parser.add_argument('-s', '--start_time', help="Start time in the format 'YYYY-MM-DD HH:MM'", required=True)
parser.add_argument('-e', '--end_time', help="End time in the format 'YYYY-MM-DD HH:MM'", required=True)
args = parser.parse_args()
path_to_csv = pathlib.Path.cwd() / args.filename
gpus_on_machine = get_gpus_on_machine()
gpus_in_csv = get_gpus_in_csv(path_to_csv, gpus_on_machine)
# ----------------------------------------------------------------------------------
df = pd.read_csv(path_to_csv)
df["time_stamp"] = pd.to_datetime(df["time_stamp"])
df.set_index("time_stamp", inplace=True)
df["gpu_uuid"] = df["gpu_uuid"].astype("string")
df["hw_slowdown"] = df["hw_slowdown"].astype("category")
df["sw_power_cap"] = df["sw_power_cap"].astype("category")
# ----------------------------------------------------------------------------------
grouped = df.groupby(["gpu_uuid"])
print(grouped[["used_power_W", "used_gpu_memory_MiB"]].agg(["max", "mean", "std"]))
# ----------------------------------------------------------------------------------
print(
f"{path_to_csv.name} was recorded over the time interval from {df.index[0]} to {df.index[-1]}."
)
df = df.loc[args.start_time:args.end_time]
# ----------------------------------------------------------------------------------
Y_labels = generate_y_labels(gpus_in_csv)
dti = resampled_time_index(df)
X_ticks = generate_time_ticks(dti)
# ----------------------------------------------------------------------------------
def save_figure(quantity):
suffix = {"used_gpu_memory_MiB": "mem", "used_power_W": "pow"}[quantity]
Y = Y_matrix(gpus_in_csv=gpus_in_csv, df=df, time_index=dti, quantity=quantity)
np.nan_to_num(Y, copy=False)
f = FigureHorizontalBars(
X=np.linspace(start=0, stop=1, num=dti.size, endpoint=True),
Y=Y,
x_ticks=X_ticks,
y_labels=Y_labels,
)
f.render()
f.save(fname=path_to_csv.with_suffix(f".{suffix}.png"))
# ----------------------------------------------------------------------------------
save_figure("used_gpu_memory_MiB")
save_figure("used_power_W")
if __name__ == "__main__":
main()