generated from benchopt/template_benchmark
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathobjective.py
66 lines (51 loc) · 1.72 KB
/
objective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from benchopt import BaseObjective
from benchopt import safe_import_context
with safe_import_context() as import_ctx:
import numpy as np
from benchmark_utils.shared import huber
from benchmark_utils.matrix_op import grad
class Objective(BaseObjective):
min_benchopt_version = "1.5"
name = "TV2D"
requirements = ["scipy"]
parameters = {
'reg': [0.02],
'delta': [0.9],
'isotropy': ["anisotropic", "isotropic"],
'data_fit': ["lsq", "huber"],
}
def __init__(self, reg=0.02, delta=0.1,
isotropy="anisotropic", data_fit="lsq"):
self.reg = reg
self.delta = delta
self.isotropy = isotropy
self.data_fit = data_fit
def set_data(self, A, y):
self.A = A
self.y = y
def evaluate_result(self, u):
R = self.y - self.A @ u # residuals
if self.data_fit == "lsq":
loss = .5 * np.linalg.norm(R) ** 2
else:
loss = huber(R, self.delta)
if self.isotropy == "isotropic":
penalty = self.isotropic_tv_value(u)
else:
penalty = self.anisotropic_tv_value(u)
return loss + self.reg * penalty
def get_one_result(self):
return dict(u=np.zeros(self.y.shape))
def get_objective(self):
return dict(A=self.A,
reg=self.reg,
delta=self.delta,
data_fit=self.data_fit,
y=self.y,
isotropy=self.isotropy)
def isotropic_tv_value(self, u):
gh, gv = grad(u)
return (np.sqrt(gh ** 2 + gv ** 2)).sum()
def anisotropic_tv_value(self, u):
gh, gv = grad(u)
return (np.abs(gh) + np.abs(gv)).sum()