-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmultirun_analyses.json
504 lines (504 loc) · 19.2 KB
/
multirun_analyses.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
{
"dataset_name": "hurricane",
"n": 10,
"analyses": {
"0": {
"cvars": {
"ivs": [
{
"description": "Masculinity-Femininity rating of hurricane names",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Total number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": null,
"columns": [
"category"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": null,
"columns": [
"wind"
]
},
{
"description": "Minimum pressure of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": null,
"columns": [
"min"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Drop rows with missing values in relevant columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'wind', 'min'])\n \n # Ensure the 'masfem' column is treated as numeric\n df['masfem'] = pd.to_numeric(df['masfem'], errors='coerce')\n \n # Ensure the 'alldeaths' column is treated as numeric\n df['alldeaths'] = pd.to_numeric(df['alldeaths'], errors='coerce')\n \n # Filter out hurricanes that caused zero deaths for a more informative analysis\n df = df[df['alldeaths'] > 0]\n \n return df",
"m_code": "def model(df: pd.DataFrame) -> Any:\n X = df[['masfem', 'category', 'wind', 'min']]\n y = df['alldeaths']\n \n # Add a constant to the independent variables matrix for intercept\n X = sm.add_constant(X)\n \n # Fit the OLS model\n model = sm.OLS(y, X).fit()\n \n # Return the summary of the model\n return model.summary()"
},
"1": {
"cvars": {
"ivs": [
{
"description": "Femininity of hurricane names",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of fatalities caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Keeping only necessary columns for the analysis\n df = df[['masfem', 'alldeaths', 'category', 'wind']]\n \n # Dropping rows with missing values in the necessary columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'wind'])\n \n return df",
"m_code": "def model(df: pd.DataFrame) -> Any:\n # Prepare the independent variables and add a constant term for the intercept\n X = df[['masfem', 'category', 'wind']]\n X = sm.add_constant(X)\n \n # The dependent variable\n y = df['alldeaths']\n \n # Fit the OLS model\n model = sm.OLS(y, X).fit()\n \n # Return the summary of the model\n return model.summary()"
},
"2": {
"cvars": {
"ivs": [
{
"description": "Gender of the hurricane name",
"columns": [
"gender_mf"
]
},
{
"description": "Femininity index of the hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Minimum pressure of the hurricane at landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Maximum wind speed of the hurricane at landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
},
{
"description": "Elapsed years since the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"elapsedyrs"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Drop rows with missing values in the key columns\n df = df.dropna(subset=['gender_mf', 'masfem', 'alldeaths', 'category', 'min', 'wind', 'elapsedyrs'])\n # Convert categorical columns to appropriate types\n df['gender_mf'] = df['gender_mf'].astype('category')\n return df\n",
"m_code": "def model(df: pd.DataFrame) -> Any:\n X = df[['gender_mf', 'masfem', 'category', 'min', 'wind', 'elapsedyrs']]\n X = pd.get_dummies(X, drop_first=True)\n y = df['alldeaths']\n X = sm.add_constant(X)\n model = sm.OLS(y, X).fit()\n return model.summary()\n"
},
"3": {
"cvars": {
"ivs": [
{
"description": "Femininity of the hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Minimum pressure of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
},
{
"description": "Normalized property damage caused by the hurricane (2015 monetary values)",
"is_moderator": false,
"moderator_on": "",
"columns": [
"ndam15"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Drop rows with missing values in the relevant columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'min', 'wind', 'ndam15'])\n return df\n",
"m_code": "def model(df: pd.DataFrame) -> Any:\n # Define the independent variables including controls\n X = df[['masfem', 'category', 'min', 'wind', 'ndam15']]\n X = sm.add_constant(X) # add constant term\n \n # Define the dependent variable\n y = df['alldeaths']\n \n # Fit the OLS model\n model = sm.OLS(y, X).fit()\n \n # Return the summary of the regression results\n return model.summary()\n"
},
"4": {
"cvars": {
"ivs": [
{
"description": "Femininity of the hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
},
{
"description": "Minimum pressure of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Elapsed years since the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"elapsedyrs"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'wind', 'min', 'elapsedyrs'])\n return df",
"m_code": "def model(df: pd.DataFrame) -> Any:\n X = df[['masfem', 'category', 'wind', 'min', 'elapsedyrs']]\n X = sm.add_constant(X)\n y = df['alldeaths']\n model = sm.OLS(y, X).fit()\n return model.summary()"
},
"5": {
"cvars": {
"ivs": [
{
"description": "Femininity of hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of fatalities caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Categorical indicator of hurricane gender",
"is_moderator": false,
"moderator_on": "",
"columns": [
"gender_mf"
]
},
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Elapsed years since the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"elapsedyrs"
]
},
{
"description": "Minimum pressure of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Drop rows with missing values in relevant columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'gender_mf', 'category', 'elapsedyrs', 'min', 'wind'])\n return df\n",
"m_code": "def model(df: pd.DataFrame) -> Any:\n # Define the independent and dependent variables\n X = df[['masfem', 'gender_mf', 'category', 'elapsedyrs', 'min', 'wind']]\n y = df['alldeaths']\n\n # Add a constant to the independent variables\n X = sm.add_constant(X)\n\n # Fit the OLS model\n model = sm.OLS(y, X).fit()\n\n # Return the model results\n return model.summary()"
},
"6": {
"cvars": {
"ivs": [
{
"description": "Femininity of the hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Minimum pressure of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Drop rows with missing values in relevant columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'min', 'wind'])\n \n # Ensure numeric columns are in the correct dtype\n df['masfem'] = pd.to_numeric(df['masfem'], errors='coerce')\n df['alldeaths'] = pd.to_numeric(df['alldeaths'], errors='coerce')\n df['category'] = pd.to_numeric(df['category'], errors='coerce')\n df['min'] = pd.to_numeric(df['min'], errors='coerce')\n df['wind'] = pd.to_numeric(df['wind'], errors='coerce')\n \n return df\n",
"m_code": "def model(df: pd.DataFrame) -> Any:\n X = df[['masfem', 'category', 'min', 'wind']]\n y = df['alldeaths']\n \n # Add a constant to the model (intercept)\n X = sm.add_constant(X)\n \n # Fit the OLS model\n model = sm.OLS(y, X).fit()\n \n # Return the summary of the model\n return model.summary()\n"
},
"7": {
"cvars": {
"ivs": [
{
"description": "Femininity of the hurricane's name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Minimum pressure of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Maximum wind speed of the hurricane at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
},
{
"description": "Elapsed years since the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"elapsedyrs"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Ensure no missing values in the essential columns\n df = df.dropna(subset=['alldeaths', 'masfem', 'category', 'min', 'wind', 'elapsedyrs'])\n \n # Log-transform the dependent variable to handle skewness in death counts\n df['log_alldeaths'] = np.log1p(df['alldeaths'])\n return df\n",
"m_code": "def model(df: pd.DataFrame) -> Any:\n # Define the model formula\n formula = 'log_alldeaths ~ masfem + category + min + wind + elapsedyrs'\n \n # Fit the model using OLS regression\n model = sm.OLS.from_formula(formula, data=df).fit()\n \n # Return the results of the model\n return model.summary()\n"
},
"8": {
"cvars": {
"ivs": [
{
"description": "Femininity of the hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Maximum wind speed at the time of landfall",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Ensure no missing values in relevant columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'wind'])\n return df",
"m_code": "def model(df: pd.DataFrame) -> Any:\n # Add constant term for the model\n X = df[['masfem', 'category', 'wind']]\n X = sm.add_constant(X)\n y = df['alldeaths']\n \n # Fit the model\n model = sm.OLS(y, X).fit()\n \n # Return the model results\n return model.summary()"
},
"9": {
"cvars": {
"ivs": [
{
"description": "Femininity of the hurricane name",
"columns": [
"masfem"
]
}
],
"dv": {
"description": "Number of deaths caused by the hurricane",
"columns": [
"alldeaths"
]
},
"controls": [
{
"description": "Category of the hurricane on the Saffir-Simpson scale",
"is_moderator": false,
"moderator_on": "",
"columns": [
"category"
]
},
{
"description": "Minimum pressure of the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"min"
]
},
{
"description": "Maximum wind speed of the hurricane",
"is_moderator": false,
"moderator_on": "",
"columns": [
"wind"
]
}
]
},
"transform_code": "def transform(df: pd.DataFrame) -> pd.DataFrame:\n # Drop rows with missing values in the relevant columns\n df = df.dropna(subset=['masfem', 'alldeaths', 'category', 'min', 'wind'])\n \n # Ensure the types of the columns are correct\n df['masfem'] = df['masfem'].astype(float)\n df['alldeaths'] = df['alldeaths'].astype(int)\n df['category'] = df['category'].astype(int)\n df['min'] = df['min'].astype(float)\n df['wind'] = df['wind'].astype(float)\n \n return df\n",
"m_code": "def model(df: pd.DataFrame) -> Any:\n # Define the independent variables (including control variables)\n X = df[['masfem', 'category', 'min', 'wind']]\n X = sm.add_constant(X) # Adds a constant term to the model\n \n # Define the dependent variable\n y = df['alldeaths']\n \n # Fit the OLS regression model\n model = sm.OLS(y, X).fit()\n \n # Return the results\n return model.summary()\n"
}
}
}