-
Notifications
You must be signed in to change notification settings - Fork 0
/
mbrl_solo.py
287 lines (237 loc) · 10.3 KB
/
mbrl_solo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
from model_module import ForwardModel, InverseModel
import pybullet as p
from bullet_utils.env import BulletEnvWithGround
from robot_properties_solo.solo12wrapper import Solo12Robot
from robot_properties_solo.config import Solo12Config
from utils import process_robot_state
import torch
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
global log_iter
import time
log_iter = 0
import sys
import dill as pickle
import uuid
def init_models(robot,f_model,i_model,des_dq,des_forces,des_q):
global log_iter
#rand_taus = np.random.uniform(low=-torque_limits/5.0, high=torque_limits/5.0, size=(150, 12))
taus = np.load('demos/des_taus_200.npy').squeeze()[:50]
q = np.array(Solo12Config.initial_configuration)
dq = np.array(Solo12Config.initial_velocity)
robot.reset_state(q.T, dq.T)
p.stepSimulation()
q, dq = robot.get_state()
forces = robot.get_force()
_q = []
_dq = []
_forces = []
_M = []
_h = []
_rot = []
_taus = []
q,dq,forces,M,h,rot = process_robot_state(q, dq, forces,robot)
_q.append(q)
_dq.append(dq)
_forces.append(forces)
_M.append(M)
_h.append(h)
_rot.append(rot)
for t,tau in enumerate(taus):
tau = ((3.0 * (des_q[0][6:] - q[6:]) + (0.1 * (des_dq[0][6:] - dq[6:])))).clip(-1.0, 1.0)
robot.send_joint_command(tau)
# Step the simulator.
p.stepSimulation()
# Read the final state and forces after the stepping.
q, dq = robot.get_state()
forces = robot.get_force()
q,dq,forces,M,h,rot = process_robot_state(q, dq, forces,robot)
_q.append(q)
_dq.append(dq)
_forces.append(forces)
_M.append(M)
_h.append(h)
_rot.append(rot)
_taus.append(tau)
#
# np.save('demos/des_dq_200',_dq)
# np.save('demos/des_forces_200',_forces[1:])
# np.save('demos/des_taus_200',taus)
# np.save('demos/des_q_200',_q[1:])
# exit()
f_model.train(_q,_dq,_M,_h,_rot,_forces,_taus)
i_model.train_coupled(_q,_dq,_forces,_taus,_M,_h,_rot,des_dq=des_dq,des_forces=des_forces,f_model=f_model,joint_loss=True,sup_loss=False)
# logging:
# pred_dq,pred_forces = f_model.forward(torch.Tensor(_q)[:-1],torch.Tensor(_dq)[:-1],torch.Tensor(_M)[:-1],torch.Tensor(_h)[:-1],torch.Tensor(_rot)[:-1],torch.Tensor(_forces)[:-1],torch.Tensor(_taus))
#
# des_states = f_model._process_state(torch.Tensor(_dq)[1:])*f_model.dt
#
# for n_iter in range(len(pred_dq)):
# for dim in range(len(pred_dq[n_iter])):
# writer.add_scalars('dim '+str(dim) , {'pred': pred_dq[n_iter, dim],
# 'obs': des_states[n_iter, dim]},log_iter
# )
# for dim in range(len(pred_forces[n_iter])):
# writer.add_scalars('forces '+str(dim) , {'pred': pred_forces[n_iter, dim],
# 'obs': torch.Tensor(_forces)[n_iter, dim]},log_iter
# )
# log_iter += 1
return None
if __name__ == "__main__":
experiment_id = uuid.uuid4()
np.random.seed(422)
torch.manual_seed(422)
dt = 1.0/250.0
env = BulletEnvWithGround(p.GUI,dt=dt)
p.resetDebugVisualizerCamera(cameraDistance=1.5, cameraYaw=-30, cameraPitch=-30,
cameraTargetPosition=[0.5, 0, 0])
robot = env.add_robot(Solo12Robot)
dt = 1.0/250.0
coupled = True
target_index = '200'
joint_loss = True
torque_limits = np.zeros(12)+1.0
des_dq = list(np.load('demos/des_dq_'+str(target_index)+'.npy'))
des_forces = list(np.load('demos/des_forces_'+str(target_index)+'.npy'))
des_q = list(np.load('demos/des_q_' + str(target_index) + '.npy'))
base_dim = 6
f_model = ForwardModel(torque_limits=torque_limits,base_dim=base_dim,force_dim=12,robot=robot,dt=dt,dof=12)
i_model = InverseModel(torque_limits=torque_limits,base_dim=base_dim,force_dim=12,robot=robot,dt=dt,dof=12)
reset_state = init_models(robot,f_model,i_model,des_dq,des_forces,des_q)
mbrl_iterations =30
res_dic = {}
res_dic['target'] = target_index
res_dic['coupled'] = coupled
res_dic['joint_loss'] = joint_loss
res_dic['mbrl_iterations'] = []
for mbrl_iter in range(mbrl_iterations):
iter_dic = {}
q = np.array(Solo12Config.initial_configuration)
dq = np.array(Solo12Config.initial_velocity)
robot.reset_state(q.T, dq.T)
p.stepSimulation()
q, dq = robot.get_state()
forces = robot.get_force()
_q = []
_dq = []
_forces = []
_M = []
_h = []
_rot = []
_taus = []
q, dq, forces, M, h, rot = process_robot_state(q, dq, forces, robot)
_q.append(q)
_dq.append(dq)
_forces.append(forces)
_M.append(M)
_h.append(h)
_rot.append(rot)
feedback_state = q.copy()
for t in range(len(des_dq)-1):
pred_tau, PD = i_model.predict(q,dq,des_dq[t+1],forces,des_forces[t],des_q[0])
robot.send_joint_command(pred_tau)
# Step the simulator.
p.stepSimulation()
feedback_state = q.copy()
# Read the final state and forces after the stepping.
q, dq = robot.get_state()
forces = robot.get_force()
q, dq, forces, M, h, rot = process_robot_state(q, dq, forces, robot)
_q.append(q)
_dq.append(dq)
_forces.append(forces)
_M.append(M)
_h.append(h)
_rot.append(rot)
_taus.append(pred_tau)
# logging:
pred_dq, pred_forces,pred_ddq = f_model.forward(torch.Tensor(_q)[:-1], torch.Tensor(_dq)[:-1], torch.Tensor(_M)[:-1],
torch.Tensor(_h)[:-1], torch.Tensor(_rot)[:-1],
torch.Tensor(_forces)[:-1], torch.Tensor(_taus))
obs_states = f_model._process_state(torch.Tensor(_dq)[1:]) * f_model.dt
norm_des_dq = f_model._process_state(torch.Tensor(des_dq))*f_model.dt
for n_iter in range(len(pred_dq)):
for dim in range(len(pred_dq[n_iter])):
writer.add_scalars('dim ' + str(dim), {'pred': pred_dq[n_iter, dim],
'obs': obs_states[n_iter, dim],
'des': norm_des_dq[n_iter,dim]}, log_iter
)
for dim in range(len(pred_forces[n_iter])):
writer.add_scalars('forces ' + str(dim), {'pred': pred_forces[n_iter, dim],
'obs': torch.Tensor(_forces)[n_iter, dim],
'des':torch.Tensor(des_forces)[n_iter,dim]}, log_iter
)
log_iter += 1
f_model.train(_q, _dq, _M, _h, _rot, _forces, _taus)
i_model.train_coupled(_q, _dq, _forces, _taus, _M, _h, _rot, des_dq=des_dq, des_forces=des_forces,
f_model=f_model, joint_loss=True, sup_loss=False)
# ####logging:
#
# pred_delta = pred.detach().numpy()
#
# for n_iter in range(len(pred_delta)):
# for dim in range(len(pred_delta[n_iter])):
# writer.add_scalars('dim ' + str(dim), {'pred': pred_delta[n_iter, dim],
# 'obs': obs_des_states[n_iter, dim],
# 'des': q_des[n_iter,dim]}, log_iter)
# for dim in range(12):
# writer.add_scalars('tau '+str(dim), {'taus': taus[n_iter,dim]},log_iter)
#
#
# for dim in range(f_model.pos_dim):
# writer.add_scalars('pos ' + str(dim), {'obs': global_states[n_iter, dim],
# 'des': des_global_state[n_iter,dim]}, log_iter)
# log_iter+=1
#
# mse_loss = torch.nn.MSELoss()
#
# pred_error = mse_loss(pred,torch.Tensor(obs_des_states))
# perf_error = mse_loss(torch.Tensor(obs_des_states),torch.Tensor(q_des))
# task_error = mse_loss(torch.Tensor(q_des),pred)
# base_error = np.mean((global_states[:,0]-des_global_state[:,0])**2)
#
# writer.add_scalar('base error',base_error,mbrl_iter)
# writer.add_scalar('pred error',pred_error.item()*100,mbrl_iter)
# writer.add_scalar('perf error', perf_error.item(), mbrl_iter)
# writer.add_scalar('task error', task_error.item()*100, mbrl_iter)
#
#
# iter_dic['it_count'] = mbrl_iter
# iter_dic['states'] = global_states
# iter_dic['obs_accs'] = obs_des_states
# iter_dic['actions'] = taus
# iter_dic['pred_states'] = pred_delta
#
# iter_dic['base_error'] = base_error
# iter_dic['pred_error'] = pred_error.item()
# iter_dic['perf_error'] = perf_error.item()
# iter_dic['task_error'] = task_error.item()
#
#
# iter_dic['q_des'] = np.array(q_des)
# iter_dic['des_states'] = des_global_state
#
# iter_dic['pred_losses'] = f_model.pred_losses.copy()
# iter_dic['task_losses'] = f_model.task_losses.copy()
# iter_dic['perf_losses'] = f_model.perf_losses.copy()
# iter_dic['f_model'] = f_model.save().copy()
# iter_dic['i_model'] = i_model.save().copy()
# del f_model.pred_losses
# del f_model.task_losses
# del f_model.perf_losses
# f_model.pred_losses = []
# f_model.task_losses =[]
# f_model.perf_losses = []
#
# res_dic['mbrl_iterations'].append(iter_dic)
# with open('results/jordan/res_dict_'+str(experiment_id)+'.pkl', "wb") as fp:
# pickle.dump(res_dic, fp, protocol=pickle.HIGHEST_PROTOCOL)
# X_data = f_model.X
# Y_data = f_model.Y
# f_model = ForwardModel(pos_dim=1 + 12 + (4 * 3), vel_dim=1 + 12, action_dim=12, output_dim=1 + 12 + (4 * 3),
# torque_limits=torque_limits, babbling_length=babbling_length)
# f_model.X = X_data.copy()
# f_model.Y = Y_data.copy()
# Expose the name also as Solo12Robot.
#Solo12Robot = Quadruped12Robot