From 9d0c3e3860472d414396d1548ad9844f0a27f029 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Boris=20Cl=C3=A9net?= <117362283+bclenet@users.noreply.github.com> Date: Mon, 24 Jun 2024 09:17:18 +0200 Subject: [PATCH] 4SZ2 reproduction (#193) * First version of 4SZ2 reproduction [skip ci] * Starting group level [skip ci@ * Group level and output files * Correcting bugs in group level analyses * First dockerfile test based on nipype * Undo changes on Dockerfile * Correlation update * Codespell in code of conduct * Restoring Dockerfile * Adding nuisance regressors in the group level analysis * Adding nuisance regressors in the group level analysis * Adding nuisance regressors in the group level analysis * Adding nuisance regressors in the group level analysis * Adding nuisance regressors in the group level analysis * Adding nuisance regressors in the group level analysis * Changing group level outputs * FILMGLS prewhittens data --- CODE_OF_CONDUCT.md | 2 +- narps_open/pipelines/__init__.py | 2 +- narps_open/pipelines/team_4SZ2.py | 466 +++++++++++++++++++++++ narps_open/utils/correlation/__main__.py | 2 +- tests/pipelines/test_team_4SZ2.py | 106 ++++++ 5 files changed, 575 insertions(+), 3 deletions(-) create mode 100644 narps_open/pipelines/team_4SZ2.py create mode 100644 tests/pipelines/test_team_4SZ2.py diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md index 2ed9dd15..094620ef 100644 --- a/CODE_OF_CONDUCT.md +++ b/CODE_OF_CONDUCT.md @@ -5,7 +5,7 @@ We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender -identity and expression, level of experience, education, socio-economic status, +identity and expression, level of experience, education, socioeconomic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation. diff --git a/narps_open/pipelines/__init__.py b/narps_open/pipelines/__init__.py index d6af5905..e4f90dfb 100644 --- a/narps_open/pipelines/__init__.py +++ b/narps_open/pipelines/__init__.py @@ -26,7 +26,7 @@ '3TR7': 'PipelineTeam3TR7', '43FJ': None, '46CD': None, - '4SZ2': None, + '4SZ2': 'PipelineTeam4SZ2', '4TQ6': 'PipelineTeam4TQ6', '50GV': None, '51PW': 'PipelineTeam51PW', diff --git a/narps_open/pipelines/team_4SZ2.py b/narps_open/pipelines/team_4SZ2.py new file mode 100644 index 00000000..76f80825 --- /dev/null +++ b/narps_open/pipelines/team_4SZ2.py @@ -0,0 +1,466 @@ +#!/usr/bin/python +# coding: utf-8 + +""" Write the work of NARPS team 4SZ2 using Nipype """ + +from os.path import join +from itertools import product + +from numpy import array + +from nipype import Workflow, Node, MapNode +from nipype.interfaces.utility import IdentityInterface, Function, Split +from nipype.interfaces.io import SelectFiles, DataSink +from nipype.interfaces.fsl import ( + IsotropicSmooth, Level1Design, FEATModel, + L2Model, Merge, FLAMEO, FILMGLS, MultipleRegressDesign, + FSLCommand, Cluster + ) +from nipype.algorithms.modelgen import SpecifyModel +from nipype.interfaces.fsl.maths import MathsCommand + +from narps_open.utils.configuration import Configuration +from narps_open.pipelines import Pipeline +from narps_open.data.task import TaskInformation +from narps_open.data.participants import get_group, get_participants_information +from narps_open.core.common import list_intersection, elements_in_string, clean_list +from narps_open.core.interfaces import InterfaceFactory + +# Setup FSL +FSLCommand.set_default_output_type('NIFTI_GZ') + +class PipelineTeam4SZ2(Pipeline): + """ A class that defines the pipeline of team 4SZ2 """ + + def __init__(self): + super().__init__() + self.fwhm = 5.0 + self.team_id = '4SZ2' + self.contrast_list = ['1', '2'] + self.run_level_contrasts = [ + ('effect_of_gain', 'T', ['gain', 'loss'], [1, 0]), + ('effect_of_loss', 'T', ['gain', 'loss'], [0, 1]) + ] + self.group_level_contrasts = [ + ('group_equal_indifference', 'T', ['equalIndifference', 'equalRange'], [1, 0]), + ('group_equal_range', 'T', ['equalIndifference', 'equalRange'], [0, 1]), + ('group_comparison', 'T', ['equalIndifference', 'equalRange'], [-1, 1]) + ] + + def get_preprocessing(self): + """ No preprocessing has been done by team 4SZ2 """ + return None + + def get_subject_information(event_file): + """ + Create Bunchs for specifyModel. + + Parameters : + - event_file : str, file corresponding to the run and the subject to analyze + + Returns : + - subject_info : list of Bunch for 1st level analysis. + """ + from nipype.interfaces.base import Bunch + + onsets = [] + durations = [] + amplitudes_gain = [] + amplitudes_loss = [] + + with open(event_file, 'rt') as file: + next(file) # skip the header + + for line in file: + info = line.strip().split() + onsets.append(float(info[0])) + durations.append(float(info[1])) + amplitudes_gain.append(float(info[2])) + amplitudes_loss.append(float(info[3])) + + return [ + Bunch( + conditions = ['gain', 'loss'], + onsets = [onsets] * 2, + durations = [durations] * 2, + amplitudes = [amplitudes_gain, amplitudes_loss] + ) + ] + + def get_run_level_analysis(self): + """ + Create the run level analysis workflow. + + Returns: + - run_level : nipype.WorkFlow + """ + # Create run level analysis workflow and connect its nodes + run_level = Workflow( + base_dir = self.directories.working_dir, + name = 'run_level_analysis' + ) + + # IdentityInterface Node - Iterate on subject and runs + information_source = Node(IdentityInterface( + fields = ['subject_id', 'run_id']), + name = 'information_source') + information_source.iterables = [ + ('subject_id', self.subject_list), + ('run_id', self.run_list) + ] + + # SelectFiles - Get necessary files + templates = { + 'func' : join('derivatives', 'fmriprep', 'sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-{run_id}_bold_space-MNI152NLin2009cAsym_preproc.nii.gz'), + 'events' : join('sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-{run_id}_events.tsv') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.base_directory = self.directories.dataset_dir + run_level.connect(information_source, 'subject_id', select_files, 'subject_id') + run_level.connect(information_source, 'run_id', select_files, 'run_id') + + # IsotropicSmooth Node - Smoothing data + smoothing_func = Node(IsotropicSmooth(), name = 'smoothing_func') + smoothing_func.inputs.fwhm = self.fwhm + run_level.connect(select_files, 'func', smoothing_func, 'in_file') + + # Get Subject Info - get subject specific condition information + subject_information = Node(Function( + function = self.get_subject_information, + input_names = ['event_file'], + output_names = ['subject_info'] + ), name = 'subject_information') + run_level.connect(select_files, 'events', subject_information, 'event_file') + + # SpecifyModel Node - Generate run level model + specify_model = Node(SpecifyModel(), name = 'specify_model') + specify_model.inputs.high_pass_filter_cutoff = 100 + specify_model.inputs.input_units = 'secs' + specify_model.inputs.time_repetition = TaskInformation()['RepetitionTime'] + run_level.connect(smoothing_func, 'out_file', specify_model, 'functional_runs') + run_level.connect(subject_information, 'subject_info', specify_model, 'subject_info') + + # Level1Design Node - Generate files for run level computation + model_design = Node(Level1Design(), name = 'model_design') + model_design.inputs.bases = {'dgamma' : {'derivs' : True }} + model_design.inputs.interscan_interval = TaskInformation()['RepetitionTime'] + model_design.inputs.model_serial_correlations = True + model_design.inputs.contrasts = self.run_level_contrasts + run_level.connect(specify_model, 'session_info', model_design, 'session_info') + + # FEATModel Node - Generate run level model + model_generation = Node(FEATModel(), name = 'model_generation') + run_level.connect(model_design, 'ev_files', model_generation, 'ev_files') + run_level.connect(model_design, 'fsf_files', model_generation, 'fsf_file') + + # FILMGLS Node - Estimate first level model + model_estimate = Node(FILMGLS(), name='model_estimate') + model_estimate.inputs.output_pwdata = True + run_level.connect(smoothing_func, 'out_file', model_estimate, 'in_file') + run_level.connect(model_generation, 'con_file', model_estimate, 'tcon_file') + run_level.connect(model_generation, 'design_file', model_estimate, 'design_file') + + # DataSink Node - store the wanted results in the wanted directory + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + run_level.connect(model_estimate, 'results_dir', data_sink, 'run_level_analysis.@results') + run_level.connect( + model_generation, 'design_file', data_sink, 'run_level_analysis.@design_file') + run_level.connect( + model_generation, 'design_image', data_sink, 'run_level_analysis.@design_img') + + # Remove large files, if requested + if Configuration()['pipelines']['remove_unused_data']: + remove_smooth = Node( + InterfaceFactory.create('remove_parent_directory'), + name = 'remove_smooth') + run_level.connect(data_sink, 'out_file', remove_smooth, '_') + run_level.connect(smoothing_func, 'out_file', remove_smooth, 'file_name') + + return run_level + + def get_run_level_outputs(self): + """ Return the names of the files the run level analysis is supposed to generate. """ + + parameters = { + 'run_id' : self.run_list, + 'subject_id' : self.subject_list, + 'contrast_id' : self.contrast_list, + } + parameter_sets = product(*parameters.values()) + output_dir = join(self.directories.output_dir, + 'run_level_analysis', '_run_id_{run_id}_subject_id_{subject_id}') + templates = [ + join(output_dir, 'results', 'cope{contrast_id}.nii.gz'), + join(output_dir, 'results', 'tstat{contrast_id}.nii.gz'), + join(output_dir, 'results', 'varcope{contrast_id}.nii.gz'), + join(output_dir, 'results', 'zstat{contrast_id}.nii.gz') + ] + return [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets for template in templates] + + def get_subject_level_analysis(self): + """ No subject level analysis has been done by team 4SZ2 """ + return None + + @staticmethod + def get_group_level_regressors(subject_list: list, run_list: list): + """ + Create dictionary of regressors for two sample t-test group analysis. + + Parameters: + - subject_list: ids of subject for which to do the analysis + - run_list: ids of runs for which to do the analysis + + Returns: + - regressors, dict: containing named lists of regressors. + - groups, list: group identifiers to distinguish groups in FSL analysis. + """ + + # Create lists containing regressors for each group (equalRange, equalIndifference) + # * 1 if the participant is on the group + # * 0 otherwise + equal_range_group = get_group('equalRange') + equal_indif_group = get_group('equalIndifference') + equal_range_regressor = [ + 1 if s in equal_range_group else 0 for s in subject_list for _ in run_list] + equal_indif_regressor = [ + 1 if s in equal_indif_group else 0 for s in subject_list for _ in run_list] + + # Get gender and age of participants + participants_data = get_participants_information()[['participant_id', 'gender', 'age']] + participants = participants_data.loc[ + participants_data['participant_id'].isin([f'sub-{s}' for s in subject_list]) + ] + ages = array(participants['age']) + genders = array(participants['gender']) + + # Create regressors output + regressors = dict( + equalIndifference = equal_indif_regressor, + equalRange = equal_range_regressor, + age = [int(a) for a in ages for _ in run_list], + gender = [1 if i == 'F' else 0 for i in genders for _ in run_list] + ) + + return regressors + + def get_group_level_analysis(self): + """ + Return all workflows for the group level analysis. + + Returns; + - a list of nipype.WorkFlow + """ + # Compute the number of participants in the analysis + nb_subjects = len(self.subject_list) + + # Declare the workflow + group_level = Workflow( + base_dir = self.directories.working_dir, + name = f'group_level_analysis_nsub_{nb_subjects}') + + # Infosource Node - iterate over the contrasts generated by the subject level analysis + information_source = Node(IdentityInterface( + fields = ['contrast_id']), + name = 'information_source') + information_source.iterables = [('contrast_id', self.contrast_list)] + + # SelectFiles Node - select necessary files + templates = { + 'cope' : join(self.directories.output_dir, + 'run_level_analysis', '_run_id_*_subject_id_*', 'results', + 'cope{contrast_id}.nii.gz'), + 'varcope' : join(self.directories.output_dir, + 'run_level_analysis', '_run_id_*_subject_id_*', 'results', + 'varcope{contrast_id}.nii.gz'), + 'masks': join('derivatives', 'fmriprep', 'sub-*', 'func', + 'sub-*_task-MGT_run-*_bold_space-MNI152NLin2009cAsym_brainmask.nii.gz') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.base_directory = self.directories.dataset_dir + group_level.connect(information_source, 'contrast_id', select_files, 'contrast_id') + + # Create a function to complete the subject ids out from the get_*_subjects node + complete_subject_ids = lambda l : [f'_subject_id_{a}' for a in l] + complete_sub_ids = lambda l : [f'sub-{a}' for a in l] + + # Function Node elements_in_string + # Get contrast of parameter estimates (cope) for subjects in a given group + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_copes = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_copes', iterfield = 'input_str' + ) + get_copes.inputs.elements = complete_subject_ids(self.subject_list) + group_level.connect(select_files, 'cope', get_copes, 'input_str') + + # Function Node elements_in_string + # Get variance of the estimated copes (varcope) for subjects in a given group + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_varcopes = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_varcopes', iterfield = 'input_str' + ) + get_varcopes.inputs.elements = complete_subject_ids(self.subject_list) + group_level.connect(select_files, 'varcope', get_varcopes, 'input_str') + + # Function Node elements_in_string + # Get masks for subjects in a given group + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_masks = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_masks', iterfield = 'input_str' + ) + get_masks.inputs.elements = complete_sub_ids(self.subject_list) + group_level.connect(select_files, 'masks', get_masks, 'input_str') + + # Merge Node - Merge cope files + merge_copes = Node(Merge(), name = 'merge_copes') + merge_copes.inputs.dimension = 't' + group_level.connect(get_copes, ('out_list', clean_list), merge_copes, 'in_files') + + # Merge Masks - Merge mask files + merge_masks = Node(Merge(), name = 'merge_masks') + merge_masks.inputs.dimension = 't' + group_level.connect(get_masks, ('out_list', clean_list), merge_masks, 'in_files') + + # Merge Node - Merge cope files + merge_varcopes = Node(Merge(), name = 'merge_varcopes') + merge_varcopes.inputs.dimension = 't' + group_level.connect(get_varcopes, ('out_list', clean_list), merge_varcopes, 'in_files') + + # MathsCommand Node - Create a global mask by + # computing the intersection of all run masks. + mask_intersection = Node(MathsCommand(), name = 'mask_intersection') + mask_intersection.inputs.args = '-Tmin -thr 0.9' + group_level.connect(merge_masks, 'merged_file', mask_intersection, 'in_file') + + # Get regressors for the group level analysis + regressors = self.get_group_level_regressors(self.subject_list, self.run_list) + + # MultipleRegressDesign Node - Specify model + # NB : no "groups" input is needed because equalRange and equalIndifference groups + # are already modeled in the design + specify_model = Node(MultipleRegressDesign(), name = 'specify_model') + specify_model.inputs.regressors = regressors + specify_model.inputs.contrasts = self.group_level_contrasts + + # FLAMEO Node - Estimate model + estimate_model = Node(FLAMEO(), name = 'estimate_model') + estimate_model.inputs.run_mode = 'flame1' + group_level.connect(mask_intersection, 'out_file', estimate_model, 'mask_file') + group_level.connect(merge_copes, 'merged_file', estimate_model, 'cope_file') + group_level.connect(merge_varcopes, 'merged_file', estimate_model, 'var_cope_file') + group_level.connect(specify_model, 'design_mat', estimate_model, 'design_file') + group_level.connect(specify_model, 'design_con', estimate_model, 't_con_file') + group_level.connect(specify_model, 'design_grp', estimate_model, 'cov_split_file') + + # Cluster Node - Perform clustering on statistical output + cluster = MapNode( + Cluster(), + name = 'cluster', + iterfield = ['in_file', 'cope_file'], + synchronize = True + ) + cluster.inputs.threshold = 2.3 + cluster.inputs.out_threshold_file = True + group_level.connect(estimate_model, 'zstats', cluster, 'in_file') + group_level.connect(estimate_model, 'copes', cluster, 'cope_file') + + # Datasink Node - Save important files + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + group_level.connect(estimate_model, 'zstats', data_sink, + f'group_level_analysis_nsub_{nb_subjects}.@zstats') + group_level.connect(estimate_model, 'tstats', data_sink, + f'group_level_analysis_nsub_{nb_subjects}.@tstats') + group_level.connect(cluster,'threshold_file', data_sink, + f'group_level_analysis_nsub_{nb_subjects}.@threshold_file') + + return group_level + + def get_group_level_outputs(self): + """ Return all names for the files the group level analysis is supposed to generate. """ + + parameters = { + 'contrast_id': self.contrast_list, + 'file': [ + '_cluster0/zstat1_threshold.nii.gz', + '_cluster1/zstat2_threshold.nii.gz', + '_cluster2/zstat3_threshold.nii.gz', + 'tstat1.nii.gz', + 'tstat2.nii.gz', + 'tstat3.nii.gz', + 'zstat1.nii.gz', + 'zstat2.nii.gz', + 'zstat3.nii.gz' + ] + } + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + 'group_level_analysis_nsub_'+f'{len(self.subject_list)}', + '_contrast_id_{contrast_id}', + '{file}' + ) + return [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + def get_hypotheses_outputs(self): + """ Return all hypotheses output file names. """ + + nb_sub = len(self.subject_list) + files = [ + # Hypothesis 1 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_1', '_cluster0', 'zstat1_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_1', 'zstat1.nii.gz'), + # Hypothesis 2 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_1', '_cluster1', 'zstat2_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_1', 'zstat2.nii.gz'), + # Hypothesis 3 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_1', '_cluster0', 'zstat1_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_1', 'zstat1.nii.gz'), + # Hypothesis 4 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_1', '_cluster1', 'zstat2_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_1', 'zstat2.nii.gz'), + # Hypothesis 5 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_2', '_cluster0', 'zstat1_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_2', 'zstat1.nii.gz'), + # Hypothesis 6 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_2', '_cluster1', 'zstat2_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_2', 'zstat2.nii.gz'), + # Hypothesis 7 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_2', '_cluster0', 'zstat1_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_2', 'zstat1.nii.gz'), + # Hypothesis 8 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_2', '_cluster1', 'zstat2_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_2', 'zstat2.nii.gz'), + # Hypothesis 9 + join(f'group_level_analysis_nsub_{nb_sub}', + '_contrast_id_2', '_cluster2', 'zstat3_threshold.nii.gz'), + join(f'group_level_analysis_nsub_{nb_sub}', '_contrast_id_2', 'zstat3.nii.gz') + ] + return [join(self.directories.output_dir, f) for f in files] diff --git a/narps_open/utils/correlation/__main__.py b/narps_open/utils/correlation/__main__.py index 36ff4aa0..0ccf80c2 100644 --- a/narps_open/utils/correlation/__main__.py +++ b/narps_open/utils/correlation/__main__.py @@ -19,7 +19,7 @@ def main(): parser = ArgumentParser(description = 'Compare reproduced files to original results.') parser.add_argument('-t', '--team', type = str, required = True, help = 'the team ID', choices = get_implemented_pipelines()) - parser.add_argument('-n', '--nsubjects', type=int, required = True, + parser.add_argument('-n', '--nsubjects', type = int, required = True, help='the number of subjects to be selected') arguments = parser.parse_args() diff --git a/tests/pipelines/test_team_4SZ2.py b/tests/pipelines/test_team_4SZ2.py new file mode 100644 index 00000000..68ebb9c7 --- /dev/null +++ b/tests/pipelines/test_team_4SZ2.py @@ -0,0 +1,106 @@ +#!/usr/bin/python +# coding: utf-8 + +""" Tests of the 'narps_open.pipelines.team_4SZ2' module. + +Launch this test with PyTest + +Usage: +====== + pytest -q test_team_4SZ2.py + pytest -q test_team_4SZ2.py -k +""" +from os.path import join, exists, abspath +from filecmp import cmp + +from pytest import helpers, mark +from nipype import Workflow, Node, Function +from nipype.interfaces.base import Bunch + +from narps_open.utils.configuration import Configuration +from narps_open.pipelines.team_4SZ2 import PipelineTeam4SZ2 + +class TestPipelinesTeam4SZ2: + """ A class that contains all the unit tests for the PipelineTeam4SZ2 class.""" + + @staticmethod + @mark.unit_test + def test_create(): + """ Test the creation of a PipelineTeam4SZ2 object """ + + pipeline = PipelineTeam4SZ2() + + # 1 - check the parameters + assert pipeline.fwhm == 5.0 + assert pipeline.team_id == '4SZ2' + + # 2 - check workflows + assert pipeline.get_preprocessing() is None + assert isinstance(pipeline.get_run_level_analysis(), Workflow) + assert pipeline.get_subject_level_analysis() is None + assert isinstance(pipeline.get_group_level_analysis(), Workflow) + + @staticmethod + @mark.unit_test + def test_outputs(): + """ Test the expected outputs of a PipelineTeam4SZ2 object """ + + pipeline = PipelineTeam4SZ2() + + # 1 - 1 subject outputs + pipeline.subject_list = ['001'] + helpers.test_pipeline_outputs(pipeline, [0, 2*4*1*4, 0, 2*9, 18]) + + # 2 - 4 subjects outputs + pipeline.subject_list = ['001', '002', '003', '004'] + helpers.test_pipeline_outputs(pipeline, [0, 2*4*4*4, 0, 2*9, 18]) + + @staticmethod + @mark.unit_test + def test_subject_information(): + """ Test the get_subject_information method """ + + # Get test files + test_file = join(Configuration()['directories']['test_data'], 'pipelines', 'events.tsv') + + # Prepare several scenarii + info_missed = PipelineTeam4SZ2.get_subject_information(test_file) + + # Compare bunches to expected + bunch = info_missed[0] + assert isinstance(bunch, Bunch) + assert bunch.conditions == ['gain', 'loss'] + helpers.compare_float_2d_arrays(bunch.onsets, [ + [4.071, 11.834, 19.535, 27.535, 36.435], + [4.071, 11.834, 19.535, 27.535, 36.435] + ]) + helpers.compare_float_2d_arrays(bunch.durations, [ + [4.0, 4.0, 4.0, 4.0, 4.0], + [4.0, 4.0, 4.0, 4.0, 4.0] + ]) + helpers.compare_float_2d_arrays(bunch.amplitudes, [ + [14.0, 34.0, 38.0, 10.0, 16.0], + [6.0, 14.0, 19.0, 15.0, 17.0] + ]) + + @staticmethod + @mark.unit_test + def test_get_group_level_regressors(): + """ Test the get_group_level_regressors method """ + + regressors = PipelineTeam4SZ2.get_group_level_regressors( + ['001', '002', '003', '004'], + ['01', '02']) + + for k1, k2 in zip(regressors.keys(), ['equalIndifference', 'equalRange', 'age', 'gender']): + assert k1 == k2 + assert regressors['equalIndifference'] == [1, 1, 0, 0, 1, 1, 0, 0] + assert regressors['equalRange'] == [0, 0, 1, 1, 0, 0, 1, 1] + assert regressors['age'] == [24, 24, 25, 25, 27, 27, 25, 25] + assert regressors['gender'] == [0, 0, 0, 0, 1, 1, 0, 0] + + @staticmethod + @mark.pipeline_test + def test_execution(): + """ Test the execution of a PipelineTeam4SZ2 and compare results """ + helpers.test_pipeline_evaluation('4SZ2')