diff --git a/INSTALL.md b/INSTALL.md index e9f124ba..28936287 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -95,6 +95,7 @@ Finally, you are able to use the scripts of the project : * `narps_open_runner`: run pipelines * `narps_open_tester`: run a pipeline and test its results against original ones from the team +* `narps_open_correlations`: compute and display correlation between results and original ones from the team * `narps_description`: get the textual description made by a team * `narps_results`: download the original results from teams * `narps_open_status`: get status information about the development process of the pipelines @@ -107,6 +108,10 @@ narps_open_runner -t 2T6S -n 40 # and produces a report with correlation values. narps_open_tester -t 08MQ +# Compute the correlation values between results of 2T6S reproduction on 60 subjects with original ones +# WARNING : 2T6S must have been previously computed with a group of 60 subjects +narps_open_correlations -t 2T6S -n 60 + # Get the description of team C88N in markdown formatting narps_description -t C88N --md @@ -121,6 +126,7 @@ narps_open_status --json > For further information about these command line tools, read the corresponding documentation pages. > * `narps_open_runner` : [docs/running.md](docs/running.md) > * `narps_open_tester` : [docs/testing.md](docs/testing.md#command-line-tool) +> * `narps_open_correlations` : [docs/correlation.md](docs/correlation.md#command-line-tool) > * `narps_description` : [docs/description.md](docs/description.md) > * `narps_results` : [docs/data.md](docs/data.md#results-from-narps-teams) > * `narps_open_status` : [docs/status.md](docs/status.md) diff --git a/narps_open/pipelines/__init__.py b/narps_open/pipelines/__init__.py index 4b1bb767..96c2f560 100644 --- a/narps_open/pipelines/__init__.py +++ b/narps_open/pipelines/__init__.py @@ -55,7 +55,7 @@ 'K9P0': None, 'L1A8': None, 'L3V8': None, - 'L7J7': None, + 'L7J7': 'PipelineTeamL7J7', 'L9G5': None, 'O03M': None, 'O21U': None, diff --git a/narps_open/pipelines/team_L7J7.py b/narps_open/pipelines/team_L7J7.py new file mode 100644 index 00000000..973384f2 --- /dev/null +++ b/narps_open/pipelines/team_L7J7.py @@ -0,0 +1,672 @@ +#!/usr/bin/python +# coding: utf-8 + +""" Write the work of NARPS' team L7J7 using Nipype """ + +from os.path import join +from itertools import product + +from nipype import Workflow, Node, MapNode +from nipype.interfaces.utility import IdentityInterface, Function +from nipype.interfaces.io import SelectFiles, DataSink +from nipype.interfaces.spm import ( + Smooth, + OneSampleTTestDesign, EstimateModel, EstimateContrast, + Level1Design, TwoSampleTTestDesign, Threshold + ) +from nipype.algorithms.modelgen import SpecifySPMModel +from nipype.algorithms.misc import Gunzip + +from narps_open.pipelines import Pipeline +from narps_open.data.task import TaskInformation +from narps_open.data.participants import get_group +from narps_open.core.interfaces import InterfaceFactory +from narps_open.core.common import list_intersection, elements_in_string, clean_list +from narps_open.utils.configuration import Configuration + +class PipelineTeamL7J7(Pipeline): + """ A class that defines the pipeline of team L7J7. """ + + def __init__(self): + super().__init__() + self.fwhm = 6.0 + self.team_id = 'L7J7' + self.contrast_list = ['0001', '0002'] + self.subject_level_contrasts = [ + ('effect_of_gain', 'T', ['gamble', 'gamblexgain^1', 'gamblexloss^1'], [0, 1, 0]), + ('effect_of_loss', 'T', ['gamble', 'gamblexgain^1', 'gamblexloss^1'], [0, 0, 1]) + ] + + def get_preprocessing(self): + """ No preprocessing has been done by team L7J7 """ + return None + + def get_run_level_analysis(self): + """ No run level analysis has been done by team L7J7 """ + return None + + # @staticmethod # Starting python 3.10, staticmethod should be used here + # Otherwise it produces a TypeError: 'staticmethod' object is not callable + def get_subject_information(event_files: list): + """ Create Bunchs for SpecifySPMModel. + + Parameters : + - event_files: list of str, list of events files (one per run) for the subject + + Returns : + - subject_info : list of Bunch for 1st level analysis. + """ + + from nipype.interfaces.base import Bunch + + onsets = {} + durations = {} + weights_gain = {} + weights_loss = {} + + subject_info = [] + + for run_id, event_file in enumerate(event_files): + + trial_key = f'gamble_run{run_id + 1}' + gain_key = f'gain_run{run_id + 1}' + loss_key = f'loss_run{run_id + 1}' + + onsets.update({trial_key: []}) + durations.update({trial_key: []}) + weights_gain.update({gain_key: []}) + weights_loss.update({loss_key: []}) + + with open(event_file, 'rt') as file: + next(file) # skip the header + + for line in file: + info = line.strip().split() + onsets[trial_key].append(float(info[0])) + durations[trial_key].append(float(info[1])) + weights_gain[gain_key].append(float(info[2])) + weights_loss[loss_key].append(float(info[3])) + + # Create a Bunch per run, i.e. cond1_run1, cond2_run1, etc. + subject_info.append( + Bunch( + conditions = ['gamble'], + onsets = [onsets[trial_key]], + durations = [durations[trial_key]], + amplitudes = None, + tmod = None, + pmod = [Bunch( + name = ['gain', 'loss'], + poly = [1, 1], + param = [weights_gain[gain_key], weights_loss[loss_key]] + )], + regressor_names = None, + regressors = None + )) + + return subject_info + + # @staticmethod # Starting python 3.10, staticmethod should be used here + # Otherwise it produces a TypeError: 'staticmethod' object is not callable + def get_confounds_file(filepath, subject_id, run_id, working_dir): + """ + Create a new tsv files with only desired confounds per subject per run. + Also computes the first derivative of the motion parameters. + + Parameters : + - filepath : path to the subject confounds file + - subject_id : related subject id + - run_id : related run id + - working_dir: str, name of the directory for intermediate results + + Return : + - confounds_file : path to new file containing only desired confounds + """ + from os import makedirs + from os.path import join + + from pandas import DataFrame, read_csv + from numpy import array, transpose + + # Open original confounds file + data_frame = read_csv(filepath, sep = '\t', header=0) + + # Extract confounds we want to use for the model + retained_parameters = DataFrame(transpose(array([ + data_frame['X'], data_frame['Y'], data_frame['Z'], + data_frame['RotX'], data_frame['RotY'], data_frame['RotZ'] + ]))) + + # Write confounds to a file + confounds_file = join(working_dir, 'confounds_files', + f'confounds_file_sub-{subject_id}_run-{run_id}.tsv') + + makedirs(join(working_dir, 'confounds_files'), exist_ok = True) + + with open(confounds_file, 'w', encoding = 'utf-8') as writer: + writer.write(retained_parameters.to_csv( + sep = '\t', index = False, header = False, na_rep = '0.0')) + + return confounds_file + + def get_subject_level_analysis(self): + """ + Create the subject level analysis workflow. + + Returns: + - subject_level : nipype.WorkFlow + """ + # Initialize preprocessing workflow to connect nodes along the way + subject_level = Workflow( + base_dir = self.directories.working_dir, name = 'subject_level' + ) + + # Identity interface Node - to iterate over subject_id and run + info_source = Node( + IdentityInterface(fields = ['subject_id']), + name = 'info_source') + info_source.iterables = [('subject_id', self.subject_list)] + + # Select files from derivatives + templates = { + 'func': join('derivatives', 'fmriprep', 'sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-*_bold_space-MNI152NLin2009cAsym_preproc.nii.gz'), + 'confounds' : join('derivatives', 'fmriprep', 'sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-*_bold_confounds.tsv'), + 'events': join('sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-*_events.tsv') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.base_directory = self.directories.dataset_dir + select_files.inputs.sort_filelist = True + subject_level.connect(info_source, 'subject_id', select_files, 'subject_id') + + # Gunzip - gunzip files because SPM do not use .nii.gz files + gunzip = MapNode(Gunzip(), name = 'gunzip', iterfield=['in_file']) + subject_level.connect(select_files, 'func', gunzip, 'in_file') + + # Smoothing - smooth the func data + smooth = Node(Smooth(), name = 'smooth') + smooth.inputs.fwhm = self.fwhm + smooth.overwrite = False + subject_level.connect(gunzip, 'out_file', smooth, 'in_files') + + # Function node get_subject_info - get subject specific condition information + subject_info = Node(Function( + function = self.get_subject_information, + input_names = ['event_files'], + output_names = ['subject_info'] + ), + name = 'subject_info') + subject_level.connect(select_files, 'events', subject_info, 'event_files') + + # Function node get_confounds_file - Generate confounds files + confounds = MapNode(Function( + function = self.get_confounds_file, + input_names = ['filepath', 'subject_id', 'run_id', 'working_dir'], + output_names = ['confounds_file']), + name = 'confounds', iterfield = ['filepath', 'run_id']) + confounds.inputs.working_dir = self.directories.working_dir + confounds.inputs.run_id = self.run_list + subject_level.connect(info_source, 'subject_id', confounds, 'subject_id') + subject_level.connect(select_files, 'confounds', confounds, 'filepath') + + specify_model = Node(SpecifySPMModel(), name = 'specify_model') + specify_model.inputs.concatenate_runs = False + specify_model.inputs.input_units = 'secs' + specify_model.inputs.output_units = 'secs' + specify_model.inputs.time_repetition = TaskInformation()['RepetitionTime'] + specify_model.inputs.high_pass_filter_cutoff = 128 + specify_model.overwrite = False + subject_level.connect(subject_info, 'subject_info', specify_model, 'subject_info') + subject_level.connect(confounds, 'confounds_file', specify_model, 'realignment_parameters') + subject_level.connect(smooth, 'smoothed_files', specify_model, 'functional_runs') + + model_design = Node(Level1Design(), name = 'model_design') + model_design.inputs.bases = {'hrf': {'derivs': [0, 0]}} + model_design.inputs.timing_units = 'secs' + model_design.inputs.interscan_interval = TaskInformation()['RepetitionTime'] + model_design.overwrite = False + subject_level.connect(specify_model, 'session_info', model_design, 'session_info') + + model_estimate = Node(EstimateModel(), name = 'model_estimate') + model_estimate.inputs.estimation_method = {'Classical': 1} + model_estimate.overwrite = False + subject_level.connect(model_design, 'spm_mat_file', model_estimate, 'spm_mat_file') + + contrast_estimate = Node(EstimateContrast(), name = 'contraste_estimate') + contrast_estimate.inputs.contrasts = self.subject_level_contrasts + contrast_estimate.config = {'execution': {'remove_unnecessary_outputs': False}} + contrast_estimate.overwrite = False + subject_level.connect(model_estimate, 'spm_mat_file', contrast_estimate, 'spm_mat_file') + subject_level.connect(model_estimate, 'beta_images', contrast_estimate, 'beta_images') + subject_level.connect( + model_estimate, 'residual_image', contrast_estimate, 'residual_image') + + # DataSink - store the wanted results in the wanted repository + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + subject_level.connect( + contrast_estimate, 'con_images', data_sink, f'{subject_level.name}.@con_images') + subject_level.connect( + contrast_estimate, 'spm_mat_file', data_sink, f'{subject_level.name}.@spm_mat_file') + + # Remove large files, if requested + if Configuration()['pipelines']['remove_unused_data']: + + # Remove Node - Remove gunzip files once they are no longer needed + remove_gunzip = MapNode( + InterfaceFactory.create('remove_parent_directory'), + name = 'remove_gunzip', + iterfield = ['file_name'] + ) + + # Remove Node - Remove smoothed files once they are no longer needed + remove_smooth = MapNode( + InterfaceFactory.create('remove_parent_directory'), + name = 'remove_smooth', + iterfield = ['file_name'] + ) + + # Add connections + subject_level.connect([ + (smooth, remove_gunzip, [('smoothed_files', '_')]), + (gunzip, remove_gunzip, [('out_file', 'file_name')]), + (data_sink, remove_smooth, [('out_file', '_')]), + (smooth, remove_smooth, [('smoothed_files', 'file_name')]) + ]) + + + return subject_level + + def get_subject_level_outputs(self): + """ Return the names of the files the subject level analysis is supposed to generate. """ + + templates = [join( + self.directories.output_dir, + 'subject_level', '_subject_id_{subject_id}', f'con_{contrast_id}.nii')\ + for contrast_id in self.contrast_list] + templates += [join( + self.directories.output_dir, + 'subject_level', '_subject_id_{subject_id}', 'SPM.mat')] + + # Format with subject_ids + return_list = [] + for template in templates: + return_list += [template.format(subject_id = s) for s in self.subject_list] + + return return_list + + def get_group_level_analysis(self): + """ + Return all workflows for the group level analysis. + + Returns; + - a list of nipype.WorkFlow + """ + + return [ + self.get_group_level_analysis_single_group('equalRange'), + self.get_group_level_analysis_single_group('equalIndifference'), + self.get_group_level_analysis_group_comparison() + ] + + def get_group_level_analysis_single_group(self, method): + """ + Return a workflow for the group level analysis in the single group case. + + Parameters: + - method: one of 'equalRange', 'equalIndifference' + + Returns: + - group_level_analysis: nipype.WorkFlow + """ + # Compute the number of participants used to do the analysis + nb_subjects = len(self.subject_list) + + # Infosource - a function free node to iterate over the list of subject names + info_source = Node(IdentityInterface(fields=['contrast_id']), + name = 'info_source') + info_source.iterables = [('contrast_id', self.contrast_list)] + + # Select files from subject level analysis + templates = { + 'contrasts': join(self.directories.output_dir, + 'subject_level', '_subject_id_*', 'con_{contrast_id}.nii'), + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.sort_filelist = True + select_files.inputs.base_directory = self.directories.dataset_dir + + # Datasink - save important files + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + + # Function Node get_group_subjects + # Get subjects in the group and in the subject_list + get_group_subjects = Node(Function( + function = list_intersection, + input_names = ['list_1', 'list_2'], + output_names = ['out_list'] + ), + name = 'get_group_subjects' + ) + get_group_subjects.inputs.list_1 = get_group(method) + get_group_subjects.inputs.list_2 = self.subject_list + + # Create a function to complete the subject ids out from the get_equal_*_subjects nodes + # If not complete, subject id '001' in search patterns + # would match all contrast files with 'con_0001.nii'. + complete_subject_ids = lambda l : [f'_subject_id_{a}' for a in l] + + # Function Node elements_in_string + # Get contrast files for required subjects + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_contrasts = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_contrasts', iterfield = 'input_str' + ) + + # One Sample T-Test Design - creates one sample T-Test Design + onesamplettestdes = Node(OneSampleTTestDesign(), name = 'onesampttestdes') + + # EstimateModel - estimate the parameters of the model + # Even for second level it should be 'Classical': 1. + level2estimate = Node(EstimateModel(), name = 'level2estimate') + level2estimate.inputs.estimation_method = {'Classical': 1} + + # EstimateContrast - estimates simple group contrast + level2conestimate = Node(EstimateContrast(), name = 'level2conestimate') + level2conestimate.inputs.group_contrast = True + level2conestimate.inputs.contrasts = [ + ['Group', 'T', ['mean'], [1]], ['Group', 'T', ['mean'], [-1]]] + + # Threshold Node - Create thresholded maps + threshold = MapNode(Threshold(), name = 'threshold', + iterfield = ['stat_image', 'contrast_index']) + threshold.inputs.use_fwe_correction = True + threshold.inputs.height_threshold_type = 'p-value' + threshold.inputs.force_activation = False + threshold.inputs.height_threshold = 0.05 + threshold.inputs.contrast_index = [1, 2] + + # Create the group level workflow + group_level_analysis = Workflow( + base_dir = self.directories.working_dir, + name = f'group_level_analysis_{method}_nsub_{nb_subjects}') + group_level_analysis.connect([ + (info_source, select_files, [('contrast_id', 'contrast_id')]), + (select_files, get_contrasts, [('contrasts', 'input_str')]), + (get_group_subjects, get_contrasts, [ + (('out_list', complete_subject_ids), 'elements') + ]), + (get_contrasts, onesamplettestdes, [ + (('out_list', clean_list), 'in_files') + ]), + #(select_files, onesamplettestdes, [('mask', 'explicit_mask_file')]), + (onesamplettestdes, level2estimate, [('spm_mat_file', 'spm_mat_file')]), + (level2estimate, level2conestimate, [ + ('spm_mat_file', 'spm_mat_file'), + ('beta_images', 'beta_images'), + ('residual_image', 'residual_image') + ]), + (level2conestimate, threshold, [ + ('spm_mat_file', 'spm_mat_file'), + ('spmT_images', 'stat_image') + ]), + (level2estimate, data_sink, [ + ('mask_image', f'{group_level_analysis.name}.@mask')]), + (level2conestimate, data_sink, [ + ('spm_mat_file', f'{group_level_analysis.name}.@spm_mat'), + ('spmT_images', f'{group_level_analysis.name}.@T'), + ('con_images', f'{group_level_analysis.name}.@con')]), + (threshold, data_sink, [ + ('thresholded_map', f'{group_level_analysis.name}.@thresh')]) + ]) + + return group_level_analysis + + def get_group_level_analysis_group_comparison(self): + """ + Return a workflow for the group level analysis in the group comparison case. + + Returns: + - group_level_analysis: nipype.WorkFlow + """ + # Compute the number of participants used to do the analysis + nb_subjects = len(self.subject_list) + + # Infosource - a function free node to iterate over the list of subject names + info_source = Node(IdentityInterface(fields=['contrast_id']), + name = 'info_source') + info_source.iterables = [('contrast_id', self.contrast_list)] + + # Select files from subject level analysis + templates = { + 'contrasts': join(self.directories.output_dir, + 'subject_level', '_subject_id_*', 'con_{contrast_id}.nii'), + #'mask': join('derivatives/fmriprep/gr_mask_tmax.nii') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.sort_filelist = True + select_files.inputs.base_directory = self.directories.dataset_dir + + # Datasink - save important files + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + + # Function Node get_group_subjects + # Get subjects in the group and in the subject_list + get_equal_indifference_subjects = Node(Function( + function = list_intersection, + input_names = ['list_1', 'list_2'], + output_names = ['out_list'] + ), + name = 'get_equal_indifference_subjects' + ) + get_equal_indifference_subjects.inputs.list_1 = get_group('equalIndifference') + get_equal_indifference_subjects.inputs.list_2 = self.subject_list + + # Function Node get_group_subjects + # Get subjects in the group and in the subject_list + get_equal_range_subjects = Node(Function( + function = list_intersection, + input_names = ['list_1', 'list_2'], + output_names = ['out_list'] + ), + name = 'get_equal_range_subjects' + ) + get_equal_range_subjects.inputs.list_1 = get_group('equalRange') + get_equal_range_subjects.inputs.list_2 = self.subject_list + + # Create a function to complete the subject ids out from the get_equal_*_subjects nodes + # If not complete, subject id '001' in search patterns + # would match all contrast files with 'con_0001.nii'. + complete_subject_ids = lambda l : [f'_subject_id_{a}' for a in l] + + # Function Node elements_in_string + # Get contrast files for required subjects + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_equal_indifference_contrasts = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_equal_indifference_contrasts', iterfield = 'input_str' + ) + get_equal_range_contrasts = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_equal_range_contrasts', iterfield = 'input_str' + ) + + # Two Sample T-Test Design + twosampttest = Node(TwoSampleTTestDesign(), name = 'twosampttest') + + # EstimateModel - estimate the parameters of the model + # Even for second level it should be 'Classical': 1. + level2estimate = Node(EstimateModel(), name = 'level2estimate') + level2estimate.inputs.estimation_method = {'Classical': 1} + + # EstimateContrast - estimates simple group contrast + level2conestimate = Node(EstimateContrast(), name = 'level2conestimate') + level2conestimate.inputs.group_contrast = True + level2conestimate.inputs.contrasts = [ + ['Eq range vs Eq indiff in loss', 'T', ['Group_{1}', 'Group_{2}'], [-1, 1]] + ] + + # Threshold Node - Create thresholded maps + threshold = Node(Threshold(), name = 'threshold') + threshold.inputs.use_fwe_correction = True + threshold.inputs.height_threshold_type = 'p-value' + threshold.inputs.force_activation = False + threshold.inputs.height_threshold = 0.05 + threshold.inputs.contrast_index = 1 + + # Create the group level workflow + group_level_analysis = Workflow( + base_dir = self.directories.working_dir, + name = f'group_level_analysis_groupComp_nsub_{nb_subjects}') + group_level_analysis.connect([ + (info_source, select_files, [('contrast_id', 'contrast_id')]), + (select_files, get_equal_range_contrasts, [('contrasts', 'input_str')]), + (select_files, get_equal_indifference_contrasts, [('contrasts', 'input_str')]), + (get_equal_range_subjects, get_equal_range_contrasts, [ + (('out_list', complete_subject_ids), 'elements') + ]), + (get_equal_indifference_subjects, get_equal_indifference_contrasts, [ + (('out_list', complete_subject_ids), 'elements') + ]), + (get_equal_range_contrasts, twosampttest, [ + (('out_list', clean_list), 'group1_files') + ]), + (get_equal_indifference_contrasts, twosampttest, [ + (('out_list', clean_list), 'group2_files') + ]), + #(select_files, twosampttest, [('mask', 'explicit_mask_file')]), + (twosampttest, level2estimate, [('spm_mat_file', 'spm_mat_file')]), + (level2estimate, level2conestimate, [ + ('spm_mat_file', 'spm_mat_file'), + ('beta_images', 'beta_images'), + ('residual_image', 'residual_image') + ]), + (level2conestimate, threshold, [ + ('spm_mat_file', 'spm_mat_file'), + ('spmT_images', 'stat_image') + ]), + (level2estimate, data_sink, [ + ('mask_image', f'{group_level_analysis.name}.@mask')]), + (level2conestimate, data_sink, [ + ('spm_mat_file', f'{group_level_analysis.name}.@spm_mat'), + ('spmT_images', f'{group_level_analysis.name}.@T'), + ('con_images', f'{group_level_analysis.name}.@con')]), + (threshold, data_sink, [ + ('thresholded_map', f'{group_level_analysis.name}.@thresh')]) + ]) + + return group_level_analysis + + def get_group_level_outputs(self): + """ Return all names for the files the group level analysis is supposed to generate. """ + + # Handle equalRange and equalIndifference + parameters = { + 'contrast_id': self.contrast_list, + 'method': ['equalRange', 'equalIndifference'], + 'file': [ + 'con_0001.nii', 'con_0002.nii', 'mask.nii', 'SPM.mat', + 'spmT_0001.nii', 'spmT_0002.nii', + join('_threshold0', 'spmT_0001_thr.nii'), join('_threshold1', 'spmT_0002_thr.nii') + ], + 'nb_subjects' : [str(len(self.subject_list))] + } + + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + 'group_level_analysis_{method}_nsub_{nb_subjects}', + '_contrast_id_{contrast_id}', + '{file}' + ) + return_list = [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + # Handle groupComp + parameters = { + 'contrast_id': self.contrast_list, + 'method': ['groupComp'], + 'file': [ + 'con_0001.nii', 'mask.nii', 'SPM.mat', 'spmT_0001.nii', 'spmT_0001_thr.nii' + ], + 'nb_subjects' : [str(len(self.subject_list))] + } + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + 'group_level_analysis_{method}_nsub_{nb_subjects}', + '_contrast_id_{contrast_id}', + '{file}' + ) + return_list += [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + return return_list + + def get_hypotheses_outputs(self): + """ Return all hypotheses output file names. """ + nb_sub = len(self.subject_list) + files = [ + # Hypothesis 1 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0001', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0001', 'spmT_0001.nii'), + # Hypothesis 2 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0001', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0001', 'spmT_0001.nii'), + # Hypothesis 3 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0001', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0001', 'spmT_0001.nii'), + # Hypothesis 4 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0001', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0001', 'spmT_0001.nii'), + # Hypothesis 5 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0002', '_threshold1', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0002', 'spmT_0001.nii'), + # Hypothesis 6 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0002', '_threshold1', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0002', 'spmT_0001.nii'), + # Hypothesis 7 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_0002', 'spmT_0001.nii'), + # Hypothesis 8 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_0002', 'spmT_0001.nii'), + # Hypothesis 9 + join(f'group_level_analysis_groupComp_nsub_{nb_sub}', + '_contrast_id_0002', '_threshold0', 'spmT_0001_thr.nii'), + join(f'group_level_analysis_groupComp_nsub_{nb_sub}', + '_contrast_id_0002', 'spmT_0001.nii') + ] + return [join(self.directories.output_dir, f) for f in files] diff --git a/narps_open/runner.py b/narps_open/runner.py index bf557ba0..597d1144 100644 --- a/narps_open/runner.py +++ b/narps_open/runner.py @@ -178,8 +178,15 @@ def main(): help='run the first levels only (preprocessing + subjects + runs)') parser.add_argument('-c', '--check', action='store_true', required=False, help='check pipeline outputs (runner is not launched)') + parser.add_argument('-e', '--exclusions', action='store_true', required=False, + help='run the analyses without the excluded subjects') arguments = parser.parse_args() + # Check arguments + if arguments.exclusions and not arguments.nsubjects: + print('Argument -e/--exclusions only works with -n/--nsubjects') + return + # Initialize a PipelineRunner runner = PipelineRunner(team_id = arguments.team) runner.pipeline.directories.dataset_dir = Configuration()['directories']['dataset'] @@ -193,7 +200,14 @@ def main(): elif arguments.rsubjects is not None: runner.random_nb_subjects = int(arguments.rsubjects) else: - runner.nb_subjects = int(arguments.nsubjects) + if arguments.exclusions: + # Intersection between the requested subset and the list of not excluded subjects + runner.subjects = list( + set(get_participants_subset(int(arguments.nsubjects))) + & set(get_participants(arguments.team)) + ) + else: + runner.nb_subjects = int(arguments.nsubjects) # Check data if arguments.check: diff --git a/narps_open/utils/correlation.py b/narps_open/utils/correlation/__init__.py similarity index 100% rename from narps_open/utils/correlation.py rename to narps_open/utils/correlation/__init__.py diff --git a/narps_open/utils/correlation/__main__.py b/narps_open/utils/correlation/__main__.py new file mode 100644 index 00000000..d086499b --- /dev/null +++ b/narps_open/utils/correlation/__main__.py @@ -0,0 +1,53 @@ +#!/usr/bin/python +# coding: utf-8 + +""" A command line tool for the narps_open.utils.correlation module """ + +from os.path import join +from argparse import ArgumentParser + +from narps_open.data.results import ResultsCollection +from narps_open.utils.configuration import Configuration +from narps_open.utils.correlation import get_correlation_coefficient +from narps_open.pipelines import get_implemented_pipelines +from narps_open.runner import PipelineRunner + +def main(): + """ Entry-point for the command line tool narps_open_correlations """ + + # Parse arguments + parser = ArgumentParser(description = 'Compare reproduced files to original results.') + parser.add_argument('-t', '--team', type = str, required = True, + help = 'the team ID', choices = get_implemented_pipelines()) + subjects.add_argument('-n', '--nsubjects', type=str, required = True, + help='the number of subjects to be selected') + arguments = parser.parse_args() + + # Initialize pipeline + runner = PipelineRunner(arguments.team) + runner.pipeline.directories.dataset_dir = Configuration()['directories']['dataset'] + runner.pipeline.directories.results_dir = Configuration()['directories']['reproduced_results'] + runner.pipeline.directories.set_output_dir_with_team_id(arguments.team) + runner.pipeline.directories.set_working_dir_with_team_id(arguments.team) + runner.nb_subjects = arguments.nsubjects + + # Indices and keys to the unthresholded maps + indices = list(range(1, 18, 2)) + + # Retrieve the paths to the reproduced files + reproduced_files = runner.pipeline.get_hypotheses_outputs() + reproduced_files = [reproduced_files[i] for i in indices] + + # Retrieve the paths to the results files + collection = ResultsCollection(arguments.team) + file_keys = [f'hypo{h}_unthresh.nii.gz' for h in range(1,10)] + results_files = [join(collection.directory, k) for k in file_keys] + + # Compute the correlation coefficients + print([ + get_correlation_coefficient(reproduced_file, results_file) + for reproduced_file, results_file in zip(reproduced_files, results_files) + ]) + +if __name__ == '__main__': + main() diff --git a/setup.py b/setup.py index b17409b6..e3c65bb0 100644 --- a/setup.py +++ b/setup.py @@ -71,6 +71,7 @@ 'narps_open_runner = narps_open.runner:main', 'narps_open_tester = narps_open.tester:main', 'narps_open_status = narps_open.utils.status:main', + 'narps_open_correlations = narps_open.utils.correlation.__main__:main', 'narps_description = narps_open.data.description.__main__:main', 'narps_results = narps_open.data.results.__main__:main' ] diff --git a/tests/conftest.py b/tests/conftest.py index f12f77a0..3e5570ff 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -22,6 +22,7 @@ from narps_open.utils.correlation import get_correlation_coefficient from narps_open.utils.configuration import Configuration from narps_open.data.results import ResultsCollection +from narps_open.data.participants import get_participants_subset # Init configuration, to ensure it is in testing mode Configuration(config_type='testing') @@ -88,13 +89,12 @@ def test_pipeline_execution( TODO : how to keep intermediate files of the low level for the next numbers of subjects ? - keep intermediate levels : boolean in PipelineRunner """ - # A list of number of subject to iterate over - nb_subjects_list = list(range( - Configuration()['testing']['pipelines']['nb_subjects_per_group'], - nb_subjects, - Configuration()['testing']['pipelines']['nb_subjects_per_group']) - ) - nb_subjects_list.append(nb_subjects) + # Create subdivisions of the requested subject list + nb_subjects_per_group = Configuration()['testing']['pipelines']['nb_subjects_per_group'] + all_subjects = get_participants_subset(nb_subjects) + subjects_lists = [] + for index in range(0, len(all_subjects), nb_subjects_per_group): + subjects_lists.append(all_subjects[index:index+nb_subjects_per_group]) # Initialize the pipeline runner = PipelineRunner(team_id) @@ -104,8 +104,8 @@ def test_pipeline_execution( runner.pipeline.directories.set_working_dir_with_team_id(team_id) # Run first level by (small) sub-groups of subjects - for subjects in nb_subjects_list: - runner.nb_subjects = subjects + for subjects_list in subjects_lists: + runner.subjects = subjects_list # Run as long as there are missing files after first level (with a max number of trials) # TODO : this is a workaround diff --git a/tests/pipelines/test_team_L7J7.py b/tests/pipelines/test_team_L7J7.py new file mode 100644 index 00000000..e84e32c2 --- /dev/null +++ b/tests/pipelines/test_team_L7J7.py @@ -0,0 +1,122 @@ +#!/usr/bin/python +# coding: utf-8 + +""" Tests of the 'narps_open.pipelines.team_L7J7' module. + +Launch this test with PyTest + +Usage: +====== + pytest -q test_team_L7J7.py + pytest -q test_team_L7J7.py -k +""" +from os.path import join, exists +from filecmp import cmp + +from pytest import helpers, mark +from nipype import Workflow +from nipype.interfaces.base import Bunch + +from narps_open.utils.configuration import Configuration +from narps_open.pipelines.team_L7J7 import PipelineTeamL7J7 + +class TestPipelinesTeamL7J7: + """ A class that contains all the unit tests for the PipelineTeamL7J7 class.""" + + @staticmethod + @mark.unit_test + def test_create(): + """ Test the creation of a PipelineTeamL7J7 object """ + + pipeline = PipelineTeamL7J7() + + # 1 - check the parameters + assert pipeline.fwhm == 6.0 + assert pipeline.team_id == 'L7J7' + + # 2 - check workflows + assert pipeline.get_preprocessing() is None + assert pipeline.get_run_level_analysis() is None + assert isinstance(pipeline.get_subject_level_analysis(), Workflow) + group_level = pipeline.get_group_level_analysis() + assert len(group_level) == 3 + for sub_workflow in group_level: + assert isinstance(sub_workflow, Workflow) + + @staticmethod + @mark.unit_test + def test_outputs(): + """ Test the expected outputs of a PipelineTeamL7J7 object """ + pipeline = PipelineTeamL7J7() + # 1 - 1 subject outputs + pipeline.subject_list = ['001'] + helpers.test_pipeline_outputs(pipeline, [0, 0, 3, 8*2*2 + 5*2, 18]) + + # 2 - 4 subjects outputs + pipeline.subject_list = ['001', '002', '003', '004'] + helpers.test_pipeline_outputs(pipeline, [0, 0, 12, 8*2*2 + 5*2, 18]) + + @staticmethod + @mark.unit_test + def test_subject_information(): + """ Test the get_subject_information method """ + + # Get test files + test_file = join(Configuration()['directories']['test_data'], 'pipelines', 'events.tsv') + info = PipelineTeamL7J7.get_subject_information([test_file, test_file]) + + # Compare bunches to expected + bunch = info[0] + assert isinstance(bunch, Bunch) + assert bunch.conditions == ['gamble'] + helpers.compare_float_2d_arrays(bunch.onsets, [[4.071, 11.834, 19.535, 27.535, 36.435]]) + helpers.compare_float_2d_arrays(bunch.durations, [[4.0, 4.0, 4.0, 4.0, 4.0]]) + assert bunch.amplitudes is None + assert bunch.tmod is None + assert bunch.pmod[0].name == ['gain', 'loss'] + assert bunch.pmod[0].poly == [1, 1] + helpers.compare_float_2d_arrays(bunch.pmod[0].param, + [[14.0, 34.0, 38.0, 10.0, 16.0], [6.0, 14.0, 19.0, 15.0, 17.0]]) + assert bunch.regressor_names is None + assert bunch.regressors is None + + bunch = info[1] + assert isinstance(bunch, Bunch) + assert bunch.conditions == ['gamble'] + helpers.compare_float_2d_arrays(bunch.onsets, [[4.071, 11.834, 19.535, 27.535, 36.435]]) + helpers.compare_float_2d_arrays(bunch.durations, [[4.0, 4.0, 4.0, 4.0, 4.0]]) + assert bunch.amplitudes is None + assert bunch.tmod is None + assert bunch.pmod[0].name == ['gain', 'loss'] + assert bunch.pmod[0].poly == [1, 1] + helpers.compare_float_2d_arrays(bunch.pmod[0].param, + [[14.0, 34.0, 38.0, 10.0, 16.0], [6.0, 14.0, 19.0, 15.0, 17.0]]) + assert bunch.regressor_names is None + assert bunch.regressors is None + + @staticmethod + @mark.unit_test + def test_confounds_file(temporary_data_dir): + """ Test the get_confounds_file method """ + + confounds_file = join( + Configuration()['directories']['test_data'], 'pipelines', 'confounds.tsv') + reference_file = join( + Configuration()['directories']['test_data'], 'pipelines', 'team_L7J7', 'confounds.tsv') + + # Get new confounds file + PipelineTeamL7J7.get_confounds_file(confounds_file, 'sid', 'rid', temporary_data_dir) + + # Check confounds file was created + created_confounds_file = join( + temporary_data_dir, 'confounds_files', 'confounds_file_sub-sid_run-rid.tsv') + assert exists(created_confounds_file) + + # Check contents + assert cmp(reference_file, created_confounds_file) + + @staticmethod + @mark.pipeline_test + def test_execution(): + """ Test the execution of a PipelineTeamL7J7 and compare results """ + helpers.test_pipeline_evaluation('L7J7') diff --git a/tests/test_data/pipelines/team_L7J7/confounds.tsv b/tests/test_data/pipelines/team_L7J7/confounds.tsv new file mode 100644 index 00000000..cf63c178 --- /dev/null +++ b/tests/test_data/pipelines/team_L7J7/confounds.tsv @@ -0,0 +1,3 @@ +0.0 0.0 0.0 0.0 -0.0 0.0 +-0.00996895 -0.0313444 -3.00931e-06 0.00132687 -0.000384193 -0.00016819 +-2.56954e-05 -0.00923735 0.0549667 0.000997278 -0.00019745 -0.000398988