diff --git a/narps_open/pipelines/team_08MQ.py b/narps_open/pipelines/team_08MQ.py index 98918e30..510236f0 100644 --- a/narps_open/pipelines/team_08MQ.py +++ b/narps_open/pipelines/team_08MQ.py @@ -77,28 +77,11 @@ def get_preprocessing(self): #segmentation_anat.inputs.number_classes = 1 # ? segmentation_anat.inputs.segments = True # One image per tissue class - # ANTs Node - Registration to T1 MNI152 space - registration_anat = Node(Registration(), name = 'registration_anat') - """[ - 'MNI152_T1_2mm_eye_mask.nii.gz', - 'MNI152_T1_2mm_edges.nii.gz', - 'MNI152_T1_2mm_brain_mask_deweight_eyes.nii.gz', - 'MNI152_T1_2mm_brain_mask_dil1.nii.gz', - 'MNI152_T1_2mm_skull.nii.gz', - 'MNI152_T1_2mm_LR-masked.nii.gz', - 'MNI152_T1_2mm_brain.nii.gz', - 'MNI152_T1_2mm_brain_mask.nii.gz', - 'MNI152_T1_2mm_VentricleMask.nii.gz', - 'MNI152_T1_2mm_strucseg_periph.nii.gz', - 'MNI152_T1_2mm.nii.gz', - 'MNI152_T1_2mm_b0.nii.gz', - 'MNI152_T1_2mm_brain_mask_dil.nii.gz', - 'MNI152_T1_2mm_strucseg.nii.gz' - ] - """ - registration_anat.inputs.fixed_image = Info.standard_image('MNI152_T1_2mm_brain.nii.gz') - registration_anat.inputs.transforms = ['Rigid', 'Affine', 'SyN'] - registration_anat.inputs.metric = ['MI', 'MI', 'CC'] + # ANTs Node - Normalization of anatomical images to T1 MNI152 space + normalization_anat = Node(Registration(), name = 'normalization_anat') + normalization_anat.inputs.fixed_image = Info.standard_image('MNI152_T1_2mm_brain.nii.gz') + normalization_anat.inputs.transforms = ['Rigid', 'Affine', 'SyN'] + normalization_anat.inputs.metric = ['MI', 'MI', 'CC'] # Threshold Node - create white-matter mask threshold_white_matter = Node(Threshold(), name = 'threshold_white_matter') @@ -127,9 +110,9 @@ def get_preprocessing(self): # FLIRT Node - Align high contrast functional images to anatomical # (i.e.: single-band reference images a.k.a. sbref) - registration_sbref = Node(FLIRT(), name = 'registration_sbref') - registration_sbref.inputs.interp = 'trilinear' - registration_sbref.inputs.cost = 'bbr' # boundary-based registration + coregistration_sbref = Node(FLIRT(), name = 'coregistration_sbref') + coregistration_sbref.inputs.interp = 'trilinear' + coregistration_sbref.inputs.cost = 'bbr' # boundary-based registration #out_file #out_matrix_file # fieldmap (a pathlike object or string representing a file) – Fieldmap image in rads/s - must be already registered to the reference image. Maps to a command-line argument: -fieldmap %s. @@ -137,6 +120,9 @@ def get_preprocessing(self): # wmcoords (a pathlike object or string representing a file) – White matter boundary coordinates for BBR cost function. Maps to a command-line argument: -wmcoords %s. # wmnorms (a pathlike object or string representing a file) – White matter boundary normals for BBR cost function. Maps to a command-line argument: -wmnorms %s. + # FLIRT Node - Inverse coregistration wrap, to get anatomical to functional warp + + """ High contrast functional volume: Alignment to anatomical image including distortion correction with field map @@ -181,13 +167,16 @@ def get_preprocessing(self): smoothing.inputs.fwhm = self.fwhm #smoothing.inputs.in_file - # ApplyWarp Node - Alignment of white matter + # ApplyWarp Node - Alignment of white matter to functional space alignment_white_matter = Node(ApplyWarp(), name = 'alignment_white_matter') - alignment_white_matter.inputs.ref_file = Info.standard_image('MNI152_T1_2mm_brain.nii.gz') + #alignment_white_matter.inputs.ref_file = high contrast sbref ? + #field_file - # ApplyWarp Node - Alignment of CSF + # ApplyWarp Node - Alignment of CSF to functional space alignment_csf = Node(ApplyWarp(), name = 'alignment_csf') alignment_csf.inputs.ref_file = Info.standard_image('MNI152_T1_2mm_brain.nii.gz') + #alignment_white_matter.inputs.ref_file = high contrast sbref ? + #field_file # [INFO] The following part has to be modified with nodes of the pipeline """ @@ -233,7 +222,7 @@ def get_preprocessing(self): (select_files, bias_field_correction, [('anat', 'in_files')]), (bias_field_correction, brain_extraction_anat, [('restored_image', 'in_file')]), (brain_extraction_anat, segmentation_anat, [('out_file', 'in_files')]), - (brain_extraction_anat, registration_anat, [('out_file', 'moving_image')]), + (brain_extraction_anat, normalization_anat, [('out_file', 'moving_image')]), (brain_extraction_anat, threshold_white_matter, [('out_file', 'in_file')]), (brain_extraction_anat, threshold_csf, [('out_file', 'in_file')]), (threshold_white_matter, erode_white_matter, [('out_file', 'in_file')]), @@ -248,20 +237,27 @@ def get_preprocessing(self): (select_files, convert_to_fieldmap, [('phasediff', 'in_phase')]), # High contrast functional volume - (select_files, registration_sbref, [('sbref', 'in_file')]), - (select_files, registration_sbref, [('anat', 'reference')]), - (convert_to_fieldmap, registration_sbref, [('out_fieldmap', 'fieldmap')]), + (select_files, coregistration_sbref, [('sbref', 'in_file')]), + (select_files, coregistration_sbref, [('anat', 'reference')]), + (convert_to_fieldmap, coregistration_sbref, [('out_fieldmap', 'fieldmap')]), + + #(coregistration_sbref, , [('out_matrix_file', '')]), # Functional images (select_files, brain_extraction_func, [('func', 'in_file')]), (brain_extraction_func, motion_correction, [('out_file', 'in_file')]), - (select_files, motion_correction, [('func', 'ref_file')]), + (select_files, motion_correction, [('sbref', 'ref_file')]), (motion_correction, slice_time_correction, [('out_file', 'in_file')]), #(, alignment_white_matter, [('', 'in_file')]), #(, alignment_white_matter, [('', 'field_file')]), + #(, alignment_white_matter, [('', 'ref_file')]), #(, alignment_csf, [('', 'in_file')]), - #(, alignment_csf, [('', 'field_file')]) + #(, alignment_csf, [('', 'field_file')]), + #(, alignment_csf, [('', 'ref_file')]), + + # Outputs of preprocessing + (motion_correction, datasink, [('par_file', 'preprocessing.@par_file')]) ]) return preprocessing