-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpre_FE.py
32 lines (28 loc) · 1.24 KB
/
pre_FE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def user_tag_ansrate_feature(df):
tag_ansrate=[]
tag_len=[]
for uid in df['userID'].unique():
interactions=df[df['userID']==uid]
user_tag_dict=defaultdict(list)
for idx in range(len(interactions)):
tag=interactions.iloc[idx]['KnowledgeTag']
answer=interactions.iloc[idx]['answerCode']
if idx==0 or len(user_tag_dict[tag])==0 :
tag_ansrate.append(0)
else :
tag_ansrate.append(sum(user_tag_dict[tag])/len(user_tag_dict[tag]))
tag_len.append(len(user_tag_dict[tag]))
user_tag_dict[tag].append(0 if answer==-1 else answer)
print(len(tag_ansrate))
print(len(tag_len))
#유저가 현재 풀고있는 문제 유형을 몇번이나 풀었고 그에 따른 정답률를 리턴한다
return tag_ansrate,tag_len
def total_tag_ans_rate_feature(df):
#태그별 정답률
tag_groupby = df.groupby('KnowledgeTag').agg({
'answerCode': percentile
}).reset_index(drop=False)
tag_groupby
tag_ansrate=zip(tag_groupby['KnowledgeTag'],tag_groupby['answerCode'])
tag_ansrate_dict=dict(list(tag_ansrate))
return df['KnowledgeTag'].apply(lambda x:tag_ansrate_dict[x])