-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXLM_Trainer.py
290 lines (244 loc) · 11 KB
/
XLM_Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import logging
import numpy as np
import pandas as pd
from transformers import XLMRobertaConfig, AdamW, get_linear_schedule_with_warmup
from XLM_model import RXLMRoberta, compute_metrics
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from tqdm.auto import tqdm
from torch.cuda.amp import GradScaler
import os
import torch
logger = logging.getLogger(__name__)
scaler = GradScaler()
class Trainer(object):
def __init__(self, num_labels, label_dict, logging_steps, save_steps, max_steps,
num_train_epochs, warmup_steps, adam_epsilon, learning_rate, gradient_accumulation_steps,
max_grad_norm, eval_batch_size, train_batch_size, model_dir, dropout_rate,
weight_decay, Model_name, train_dataset=None, dev_dataset=None, test_dataset=None, activate_LSTM=None):
# self.args = args
self.train_dataset = train_dataset
self.eval_batch_size = eval_batch_size
self.train_batch_size = train_batch_size
self.dev_dataset = dev_dataset
self.test_dataset = test_dataset
self.Model_name = Model_name
self.label_lst = label_dict
self.num_labels = num_labels
self.max_steps = max_steps
self.weight_decay = weight_decay
self.learning_rate = learning_rate
self.adam_epsilon = adam_epsilon
self.warmup_steps = warmup_steps
self.num_train_epochs = num_train_epochs
self.logging_steps = logging_steps
self.save_steps = save_steps
self.max_grad_norm = max_grad_norm
self.model_dir = model_dir
self.dropout_rate = dropout_rate
self.gradient_accumulation_steps = gradient_accumulation_steps
self.activate_LSTM = activate_LSTM
self.config = XLMRobertaConfig.from_pretrained(
self.Model_name,
num_labels=self.num_labels,
# id2label={str(i): label for i, label in enumerate(self.label_lst)},
id2label=self.label_lst,
# label2id={label: i for key, label in self.label_lst},
label2id={value: key for key, value in self.label_lst.items()}
)
self.model = RXLMRoberta(
self.Model_name, config=self.config, dropout_rate=self.dropout_rate, activate_LSTM=self.activate_LSTM
)
# GPU or CPU
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
def train(self):
train_sampler = RandomSampler(self.train_dataset)
train_dataloader = DataLoader(
self.train_dataset,
sampler=train_sampler,
batch_size=self.train_batch_size,
)
if self.max_steps > 0:
t_total = self.max_steps
self.num_train_epochs = (
self.max_steps // (len(train_dataloader) // self.gradient_accumulation_steps) + 1
)
else:
t_total = len(train_dataloader) // self.gradient_accumulation_steps * self.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.learning_rate,
eps=self.adam_epsilon,
)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=self.warmup_steps,
num_training_steps=t_total,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(self.train_dataset))
logger.info(" Num Epochs = %d", self.num_train_epochs)
logger.info(" Total train batch size = %d", self.train_batch_size)
logger.info(" Gradient Accumulation steps = %d", self.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Logging steps = %d", self.logging_steps)
logger.info(" Save steps = %d", self.save_steps)
global_step = 0
tr_loss = 0.0
self.model.zero_grad()
train_iterator = tqdm(range(int(self.num_train_epochs)), desc="Epoch")
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, batch in enumerate(epoch_iterator):
self.model.train()
batch = tuple(batch[t].to(self.device) for t in batch) # GPU or CPU
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[5],
"e1_mask": batch[3],
"e2_mask": batch[4],
# "sep_mask": batch[5]
}
outputs = self.model(**inputs)
loss = outputs[0]
if self.gradient_accumulation_steps > 1:
loss = loss / self.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % self.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
optimizer.step()
# scheduler.step() # Update learning rate schedule
# scaler.update()
self.model.zero_grad()
global_step += 1
if self.logging_steps > 0 and global_step % self.logging_steps == 0:
logger.info(" global steps = %d", global_step)
self.evaluate("train") # There is no dev set for semeval task
if self.save_steps > 0 and global_step % self.save_steps == 0:
self.save_model()
if 0 < self.max_steps < global_step:
epoch_iterator.close()
break
if 0 < self.max_steps < global_step:
train_iterator.close()
break
return global_step, tr_loss / global_step
def evaluate(self, mode):
# We use test dataset because semeval doesn't have dev dataset
if mode == "test":
dataset = self.test_dataset
elif mode == "dev":
dataset = self.dev_dataset
elif mode == "train":
dataset = self.train_dataset
else:
raise Exception("Only dev and test dataset available")
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=self.eval_batch_size)
# Eval!
logger.info("***** Running evaluation on %s dataset *****", mode)
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", self.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
self.model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(batch[t].to(self.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[5],
"e1_mask": batch[3],
"e2_mask": batch[4],
# "sep_mask": batch[5]
}
outputs = self.model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
results = {"loss": eval_loss}
preds = np.argmax(preds, axis=1)
result = compute_metrics(preds, out_label_ids)
results.update(result)
logger.info("***** Eval results *****")
for key in sorted(results.keys()):
logger.info(" {} = {:.4f}".format(key, results[key]))
return results
def test_pred(self):
test_dataset = self.test_dataset
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=self.eval_batch_size)
# Eval!
logger.info("***** Running evaluation on %s dataset *****", "test")
# logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", self.eval_batch_size)
nb_eval_steps = 0
preds = None
out_label_ids = None
self.model.eval()
for batch in tqdm(test_dataloader, desc="Predicting"):
batch = tuple(batch[t].to(self.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": None,
"e1_mask": batch[3],
"e2_mask": batch[4],
# "sep_mask": batch[5]
}
outputs = self.model(**inputs)
# print(outputs)
pred = outputs[0]
nb_eval_steps += 1
if preds is None:
preds = pred.detach().cpu().numpy()
else:
preds = np.append(preds, pred.detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=1)
df = pd.DataFrame(preds, columns=['pred'])
df.to_csv('./prediction/RXLMRoberta_QA_subtract.csv', index=False)
def save_model(self):
# Save model checkpoint (Overwrite)
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
model_to_save = self.model.module if hasattr(self.model, "module") else self.model
model_to_save.save_pretrained(self.model_dir)
# Save training arguments together with the trained model
# torch.save(self.args, os.path.join(self.args.model_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", self.model_dir)
def load_model(self):
# Check whether model exists
if not os.path.exists(self.model_dir):
raise Exception("Model doesn't exists! Train first!")
self.model = RXLMRoberta.from_pretrained(self.model_dir)
self.model.to(self.device)
logger.info("***** Model Loaded *****")