forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14_2_seq2seq_att.py
145 lines (109 loc) · 4.65 KB
/
14_2_seq2seq_att.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Original code from
# https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb
#import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from text_loader import TextDataset
import seq2seq_models as sm
from seq2seq_models import cuda_variable, str2tensor, EOS_token, SOS_token
N_LAYERS = 1
BATCH_SIZE = 1
N_EPOCH = 100
N_CHARS = 128 # ASCII
HIDDEN_SIZE = N_CHARS
# Simple test to show how our train works
def test():
encoder_test = sm.EncoderRNN(10, 10, 2)
decoder_test = sm.AttnDecoderRNN(10, 10, 2)
if torch.cuda.is_available():
encoder_test.cuda()
decoder_test.cuda()
encoder_hidden = encoder_test.init_hidden()
word_input = cuda_variable(torch.LongTensor([1, 2, 3]))
encoder_outputs, encoder_hidden = encoder_test(word_input, encoder_hidden)
print(encoder_outputs.size())
word_target = cuda_variable(torch.LongTensor([1, 2, 3]))
decoder_attns = torch.zeros(1, 3, 3)
decoder_hidden = encoder_hidden
for c in range(len(word_target)):
decoder_output, decoder_hidden, decoder_attn = \
decoder_test(word_target[c],
decoder_hidden, encoder_outputs)
print(decoder_output.size(), decoder_hidden.size(), decoder_attn.size())
decoder_attns[0, c] = decoder_attn.squeeze(0).cpu().data
# Train for a given src and target
# To demonstrate seq2seq, We don't handle batch in the code,
# and our encoder runs this one step at a time
# It's extremely slow, and please do not use in practice.
# We need to use (1) batch and (2) data parallelism
# http://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.
def train(src, target):
loss = 0
src_var = str2tensor(src)
target_var = str2tensor(target, eos=True) # Add the EOS token
encoder_hidden = encoder.init_hidden()
encoder_outputs, encoder_hidden = encoder(src_var, encoder_hidden)
hidden = encoder_hidden
for c in range(len(target_var)):
# First, we feed SOS. Others, we use teacher forcing.
token = target_var[c - 1] if c else str2tensor(SOS_token)
output, hidden, attention = decoder(token, hidden, encoder_outputs)
loss += criterion(output, target_var[c])
encoder.zero_grad()
decoder.zero_grad()
loss.backward()
optimizer.step()
return loss.data[0] / len(target_var)
# Translate the given input
def translate(enc_input='thisissungkim.iloveyou.', predict_len=100, temperature=0.9):
input_var = str2tensor(enc_input)
encoder_hidden = encoder.init_hidden()
encoder_outputs, encoder_hidden = encoder(input_var, encoder_hidden)
hidden = encoder_hidden
predicted = ''
dec_input = str2tensor(SOS_token)
attentions = []
for c in range(predict_len):
output, hidden, attention = decoder(dec_input, hidden, encoder_outputs)
# Sample from the network as a multi nominal distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
attentions.append(attention.view(-1).data.cpu().numpy().tolist())
# Stop at the EOS
if top_i is EOS_token:
break
predicted_char = chr(top_i)
predicted += predicted_char
dec_input = str2tensor(predicted_char)
return predicted, attentions
if __name__ == '__main__':
encoder = sm.EncoderRNN(N_CHARS, HIDDEN_SIZE, N_LAYERS)
decoder = sm.AttnDecoderRNN(HIDDEN_SIZE, N_CHARS, N_LAYERS)
if torch.cuda.is_available():
decoder.cuda()
encoder.cuda()
print(encoder, decoder)
# test()
params = list(encoder.parameters()) + list(decoder.parameters())
optimizer = torch.optim.Adam(params, lr=0.001)
criterion = nn.CrossEntropyLoss()
train_loader = DataLoader(dataset=TextDataset(),
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=2)
print("Training for %d epochs..." % N_EPOCH)
for epoch in range(1, N_EPOCH + 1):
# Get srcs and targets from data loader
for i, (srcs, targets) in enumerate(train_loader):
train_loss = train(srcs[0], targets[0])
if i % 1000 is 0:
print('[(%d/%d %d%%) %.4f]' %
(epoch, N_EPOCH, i * len(srcs) * 100 / len(train_loader), train_loss))
output, _ = translate(srcs[0])
print(srcs[0], output, '\n')
output, attentions = translate()
print('thisissungkim.iloveyou.', output, '\n')
# plt.matshow(attentions)
# plt.show()
# print(attentions)