-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
327 lines (308 loc) · 19.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import numpy as np
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
tf.compat.v1.random.set_random_seed(42)
from tensorflow_probability import distributions as tfd
from tensorflow.keras.layers import Input, Dense, Activation, Concatenate, BatchNormalization, Dropout
from utils import sparse_loss
def nnelu(x):
#Computes the Non-Negative Exponential Linear Unit
#https://gist.github.com/oborchers/2732decb2b1cfd878ce14df0bfd76a30
return tf.add(tf.constant(1+1e-9, dtype=tf.float32), tf.nn.elu(x))
tf.keras.utils.get_custom_objects().update({'nnelu': Activation(nnelu)})
class SparseMixture(tf.keras.layers.Layer):
def __init__(self,mixture_components,use_sparse_loss = False, lmbd = 1e-4):
super(SparseMixture, self).__init__(name="SparseMixture")
self.mixture_components = mixture_components
self.use_sparse_loss = use_sparse_loss
self.lmbd = lmbd
w_init = tf.random_normal_initializer()
self.w = tf.Variable(initial_value=w_init(shape=(self.mixture_components,), dtype="float32"),trainable=True,)
def call(self,alphas):
w = tf.math.abs(self.w)/tf.reshape(tf.reduce_sum(tf.math.abs(self.w),axis=-1),(-1,1)) # Normalize weights
new_alphas = tf.math.multiply(w,alphas) # Multiply mixing components with the normalized weights
new_alphas = new_alphas/tf.reshape(tf.reduce_sum(new_alphas,axis=-1),(-1,1)) # Normalize mixing components
if self.use_sparse_loss:
self.add_loss(sparse_loss(self.w, self.lmbd))
return new_alphas
class MDN(tf.keras.Model):
def __init__(self, x_shape, n_hidden, mixture_components, use_sparse_layer = True, use_sparse_loss = False, lmbd = 1e-4,use_batchnorm = False, use_dropout = False, dropout = 0.1 , mlp_size = (1,0,0), kernel = "Exponential"):
super(MDN, self).__init__(name="MDN")
self.x_shape = x_shape
self.n_hidden = n_hidden
self.mixture_components = mixture_components
self.use_sparse_layer = use_sparse_layer
self.use_sparse_loss = use_sparse_loss
self.lmbd = lmbd
self.use_batchnorm = use_batchnorm
self.use_dropout = use_dropout
self.dropout = dropout
if ((mlp_size[0]+mlp_size[1])>=(np.log2(self.n_hidden)-2))or((mlp_size[0]+mlp_size[2])>=(np.log2(self.n_hidden)-2)):
raise ValueError(f"Number of neurons too small!")
else:
self.mlp_size = mlp_size[0]
self.alpha_mlp_size = mlp_size[1]
self.kernel_mlp_size = mlp_size[2]
self.kernel_name = kernel
# Kernel specific part
if self.kernel_name == "Exponential":
# Parameters: [0]=rate
self.mixture_parameters = 2 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "Weibull":
# Parameters: [0]=shape/concentration >= 1 to ensure the convexity of the loss function, [1]=scale
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "Gumbel":
# Parameters: [0]=loc,[1]=scale
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "Normal":
# Parameters: [0]=mu,[1]=sigma
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "LogNormal":
# Parameters: [0]=loc/mu,[1]=scale/sigma
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "Logistic":
# Parameters: [0]=mu/loc,[1]=scale
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "LogLogistic":
# Parameters: [0]=loc,[1]=scale
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
elif self.kernel_name == "Gamma":
# Parameters: [0]=concentration,[1]=rate
self.mixture_parameters = 3 # Should be the number of kernel params + 1 (which is alpha)
else:
raise NameError("Unknown kernel! Please choose one of the following instead: [Default]Exponential, Weibull, Gumbel, Normal, LogNormal, Logistic, LogLogistic, Gamma")
self.mlp = tf.keras.Sequential(
[Input(shape = (self.x_shape,),name="input"),
Dense(self.n_hidden,input_shape=(self.x_shape,), activation=None, use_bias=True, name="h1")]
+
[[BatchNormalization(name="bn1")] if (self.use_batchnorm and self.mlp_size == 0 ) else []][0]
+
[Activation("relu",name="a1")]
+
[[Dropout(rate=self.dropout,name="do1")] if (self.use_dropout and self.mlp_size == 0 ) else []][0]
+
[Dense(int(self.n_hidden/(2**(i+1))),input_shape=(int(self.n_hidden/(2**i)),), activation="relu", use_bias=True, name=f"h{i+2}") for i in range(self.mlp_size-1)]
+
[[Dense(int(self.n_hidden/(2**(self.mlp_size))),input_shape=(int(self.n_hidden/(2**(self.mlp_size-1))),), activation=None, use_bias=True, name=f"h{self.mlp_size + 1}")] if self.mlp_size > 0 else []][0]
+
[[BatchNormalization(name="bn1")] if (self.use_batchnorm and self.mlp_size > 0 ) else []][0]
+
[[Activation("relu",name="a2")] if self.mlp_size > 0 else []][0]
+
[[Dropout(rate=self.dropout,name="do1")] if (self.use_dropout and self.mlp_size > 0 ) else []][0]
)
# MLP for the mixing coefficients
self.alpha_mlp = tf.keras.Sequential(
[[Dense(int(self.n_hidden/(2**(self.mlp_size+1))),input_shape=(int(self.n_hidden/(2**(self.mlp_size))),), activation=None, use_bias=True, name=f"h{self.mlp_size + 2}")] if self.alpha_mlp_size > 0 else []][0]
+
[[BatchNormalization(name="bn2")] if (self.use_batchnorm and self.alpha_mlp_size == 1 ) else []][0]
+
[[Activation("relu",name="a3")] if self.alpha_mlp_size == 1 else []][0]
+
[[Dropout(rate=self.dropout,name="do2")] if (self.use_dropout and self.alpha_mlp_size == 1 ) else []][0]
+
[Dense(int(self.n_hidden/(2**(self.mlp_size + 2 + i))), input_shape=(int(self.n_hidden/(2**(self.mlp_size + 1 + i))),), activation="relu", use_bias=True, name=f"h{i + 3 + self.mlp_size}") for i in range(self.alpha_mlp_size-2)]
+
[[Dense(int(self.n_hidden/(2**(self.mlp_size+self.alpha_mlp_size))),input_shape=(int(self.n_hidden/(2**(self.mlp_size+self.alpha_mlp_size-1))),), activation=None, use_bias=True, name=f"h{self.mlp_size + self.alpha_mlp_size + 1}")] if self.alpha_mlp_size > 1 else []][0]
+
[[BatchNormalization(name="b2")] if (self.use_batchnorm and self.alpha_mlp_size > 1 ) else []][0]
+
[[Activation("relu",name="a4")] if self.alpha_mlp_size > 1 else []][0]
+
[[Dropout(rate=self.dropout,name="d2")] if (self.use_dropout and self.alpha_mlp_size > 1 ) else []][0]
)
self.alpha_layer = Dense(self.mixture_components,activation="softmax", use_bias=False, name="alpha_layer")
if self.use_sparse_layer:
self.sparse_mixture_layer = SparseMixture(self.mixture_components,use_sparse_loss=self.use_sparse_loss,lmbd=self.lmbd)
# MLP for the kernel parameters
self.kernel_mlp = tf.keras.Sequential(
[[Dense(int(self.n_hidden/(2**(self.mlp_size+1))),input_shape=(int(self.n_hidden/(2**(self.mlp_size))),), activation=None, use_bias=True, name=f"h{self.mlp_size + self.alpha_mlp_size + 2}")] if self.kernel_mlp_size > 0 else []][0]
+
[[BatchNormalization(name="bn3")] if (self.use_batchnorm and self.kernel_mlp_size == 1 ) else []][0]
+
[[Activation("relu",name="a5")] if self.kernel_mlp_size == 1 else []][0]
+
[[Dropout(rate=self.dropout,name="do3")] if (self.use_dropout and self.kernel_mlp_size == 1 ) else []][0]
+
[Dense(int(self.n_hidden/(2**(self.mlp_size + 2 + i))), input_shape=(int(self.n_hidden/(2**(self.mlp_size + 1 + i))),), activation="relu", use_bias=True, name=f"h{i + 3 + self.mlp_size + + self.alpha_mlp_size}") for i in range(self.kernel_mlp_size-2)]
+
[[Dense(int(self.n_hidden/(2**(self.mlp_size+self.kernel_mlp_size))),input_shape=(int(self.n_hidden/(2**(self.mlp_size+self.kernel_mlp_size-1))),), activation=None, use_bias=True, name=f"h{self.mlp_size + self.alpha_mlp_size + self.kernel_mlp_size + 1}")] if self.kernel_mlp_size > 1 else []][0]
+
[[BatchNormalization(name="b3")] if (self.use_batchnorm and self.kernel_mlp_size > 1 ) else []][0]
+
[[Activation("relu",name="a6")] if self.kernel_mlp_size > 1 else []][0]
+
[[Dropout(rate=self.dropout,name="d3")] if (self.use_dropout and self.kernel_mlp_size > 1 ) else []][0]
)
# Kernel specific part
if self.kernel_name == "Exponential":
self.rate_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="rate_layer")
elif self.kernel_name == "Weibull":
self.shape_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="shape_layer")
self.scale_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="scale_layer")
elif self.kernel_name == "Gumbel":
self.loc_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="loc_layer")
self.scale_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="scale_layer")
elif self.kernel_name == "Normal":
self.mu_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="mu_layer")
self.sigma_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="sigma_layer")
elif self.kernel_name == "LogNormal":
self.mu_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="mu_layer")
self.sigma_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="sigma_layer")
elif self.kernel_name == "Logistic":
self.mu_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="mu_layer")
self.scale_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="scale_layer")
elif self.kernel_name == "LogLogistic":
self.loc_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="loc_layer")
self.scale_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="scale_layer")
elif self.kernel_name == "Gamma":
self.con_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="con_layer")
self.rate_layer = Dense(self.mixture_components, activation="nnelu", use_bias=False, name="rate_layer")
def encode(self,inputs):
z = self.mlp(inputs)
z_alphas = self.alpha_mlp(z)
alphas = self.alpha_layer(z_alphas)
if self.use_sparse_layer:
alphas = self.sparse_mixture_layer(alphas)
z_kernel = self.kernel_mlp(z)
# Kernel specific part
if self.kernel_name == "Exponential":
rates = self.rate_layer(z_kernel)
return alphas,rates
elif self.kernel_name == "Weibull":
shapes = self.shape_layer(z_kernel)
shapes = tf.add(tf.constant(1, dtype=tf.float32), shapes) # Offsetting the shape parameter to be at least 1
scales = self.scale_layer(z_kernel)
return alphas,shapes,scales
elif self.kernel_name == "Gumbel":
locs = self.loc_layer(z_kernel)
scales = self.scale_layer(z_kernel)
return alphas,locs,scales
elif self.kernel_name == "Normal":
mus = self.mu_layer(z_kernel)
sigmas = self.sigma_layer(z_kernel)
return alphas,mus,sigmas
elif self.kernel_name == "LogNormal":
mus = self.mu_layer(z_kernel)
sigmas = self.sigma_layer(z_kernel)
return alphas,mus,sigmas
elif self.kernel_name == "Logistic":
mus = self.mu_layer(z_kernel)
scales = self.scale_layer(z_kernel)
return alphas,mus,scales
elif self.kernel_name == "LogLogistic":
mus = self.loc_layer(z_kernel)
scales = self.scale_layer(z_kernel)
return alphas,mus,scales
elif self.kernel_name == "Gamma":
cons = self.con_layer(z_kernel)
rates = self.rate_layer(z_kernel)
return alphas,cons,rates
def kernel_mixture_model(self,alphas,*params):
# Kernel specific part
if self.kernel_name == "Exponential":
kernel = tfd.Exponential(rate=params[0])
elif self.kernel_name == "Weibull":
kernel = tfd.Weibull(concentration=params[0],scale=params[1])
elif self.kernel_name == "Gumbel":
kernel = tfd.Gumbel(loc=params[0],scale=params[1])
elif self.kernel_name == "Normal":
kernel = tfd.Normal(loc=params[0],scale=params[1])
elif self.kernel_name == "LogNormal":
kernel = tfd.LogNormal(loc=params[0],scale=params[1])
elif self.kernel_name == "Logistic":
kernel = tfd.Logistic(loc=params[0],scale=params[1])
elif self.kernel_name == "LogLogistic":
kernel = tfd.Logistic(loc=params[0],scale=params[1])
elif self.kernel_name == "Gamma":
kernel = tfd.Gamma(concentration=params[0],rate=params[1])
# Making the Mixture
kmm = tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(probs=alphas),
components_distribution=kernel
)
return kmm
def predict_cdf(self,inputs,timeline,threshold=0):
alphas, *params = self.encode(inputs)
#Threshold the results for smoother CDF
params = list(map(lambda x:tf.math.multiply(x, tf.cast(alphas>threshold,x.dtype)),params))
alphas = tf.math.multiply(alphas, tf.cast(alphas>threshold,alphas.dtype))
alphas = alphas/tf.reshape(tf.reduce_sum(alphas,axis=-1),(-1,1))
#Build the model with thresholded values, and predict
kmm = self.kernel_mixture_model(alphas,*params)
cdfs = tf.map_fn(tf.function(func = lambda x: kmm.cdf(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
cdfs = np.array(cdfs)
return cdfs
def predict_pdf(self,inputs,timeline,threshold=0):
alphas, *params = self.encode(inputs)
#Threshold the results for smoother CDF
params = list(map(lambda x:tf.math.multiply(x, tf.cast(alphas>threshold,x.dtype)),params))
alphas = tf.math.multiply(alphas, tf.cast(alphas>threshold,alphas.dtype))
alphas = alphas/tf.reshape(tf.reduce_sum(alphas,axis=-1),(-1,1))
#Build the model with thresholded values, and predict
kmm = self.kernel_mixture_model(alphas,*params)
cdfs = tf.map_fn(tf.function(func = lambda x: kmm.cdf(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
norms = (np.ones_like(cdfs).T*np.sum(np.gradient(cdfs,axis=1),axis = 1)).T
pdfs = np.gradient(cdfs,axis=1)/norms
#pdfs = tf.map_fn(tf.function(func = lambda x: kmm.prob(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
#pdfs = np.array(pdfs)
return pdfs
def predict_survival(self,inputs,timeline,threshold=0):
alphas, *params = self.encode(inputs)
#Threshold the results for smoother CDF
params = list(map(lambda x:tf.math.multiply(x, tf.cast(alphas>threshold,x.dtype)),params))
alphas = tf.math.multiply(alphas, tf.cast(alphas>threshold,alphas.dtype))
alphas = alphas/tf.reshape(tf.reduce_sum(alphas,axis=-1),(-1,1))
#Build the model with thresholded values, and predict
kmm = self.kernel_mixture_model(alphas,*params)
survs = tf.map_fn(tf.function(func = lambda x: kmm.survival_function(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
survs = np.array(survs)
return survs
def predict_hazard(self,inputs,timeline,threshold=0):
alphas, *params = self.encode(inputs)
#Threshold the results for smoother CDF
params = list(map(lambda x:tf.math.multiply(x, tf.cast(alphas>threshold,x.dtype)),params))
alphas = tf.math.multiply(alphas, tf.cast(alphas>threshold,alphas.dtype))
alphas = alphas/tf.reshape(tf.reduce_sum(alphas,axis=-1),(-1,1))
#Build the model with thresholded values, and predict
kmm = self.kernel_mixture_model(alphas,*params)
cdfs = tf.map_fn(tf.function(func = lambda x: kmm.cdf(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
survs = tf.map_fn(tf.function(func = lambda x: kmm.survival_function(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
norms = (np.ones_like(cdfs).T*np.sum(np.gradient(cdfs,axis=1),axis = 1)).T
pdfs = np.gradient(cdfs,axis=1)/norms
hazards = pdfs/survs
#hazards = tf.map_fn(tf.function(func = lambda x: tf.math.divide(kmm.prob(x),tf.add(tf.constant(1e-9, dtype=tf.float32),kmm.survival_function(x)))), tf.constant(timeline), parallel_iterations=10).numpy().T
#hazards = np.array(hazards)
return hazards
def predict_cumulative_hazard(self,inputs,timeline,threshold=0):
alphas, *params = self.encode(inputs)
#Threshold the results for smoother CDF
params = list(map(lambda x:tf.math.multiply(x, tf.cast(alphas>threshold,x.dtype)),params))
alphas = tf.math.multiply(alphas, tf.cast(alphas>threshold,alphas.dtype))
alphas = alphas/tf.reshape(tf.reduce_sum(alphas,axis=-1),(-1,1))
#Build the model with thresholded values, and predict
kmm = self.kernel_mixture_model(alphas,*params)
cum_hazards = tf.map_fn(tf.function(func = lambda x: -tf.math.log(tf.add(tf.constant(1e-9, dtype=tf.float32),kmm.survival_function(x)))), tf.constant(timeline), parallel_iterations=10).numpy().T
cum_hazards = np.array(cum_hazards)
return cum_hazards
def predict_mean(self,inputs,timeline,threshold=0,predict_stddev=False):
alphas, *params = self.encode(inputs)
# Threshold the results
params = list(map(lambda x:tf.math.multiply(x, tf.cast(alphas>threshold,x.dtype)),params))
alphas = tf.math.multiply(alphas, tf.cast(alphas>threshold,alphas.dtype))
alphas = alphas/tf.reshape(tf.reduce_sum(alphas,axis=-1),(-1,1))
# Build the model with thresholded values, and predict
kmm = self.kernel_mixture_model(alphas,*params)
cdfs = tf.map_fn(tf.function(func = lambda x: kmm.cdf(x)), tf.constant(timeline), parallel_iterations=10).numpy().T
cdfs = np.array(cdfs)
norms = (np.ones_like(cdfs).T*np.sum(np.gradient(cdfs,axis=1),axis = 1)).T
pdfs = np.gradient(cdfs,axis=1)/norms
means = np.sum(pdfs*timeline,axis = 1)
if not predict_stddev:
return means
else:
stddevs = np.sqrt(np.sum(pdfs*np.square(timeline-means),axis = 1))
return means,stddevs
def call(self, inputs, training=None, mask=None):
alphas, *params = self.encode(inputs)
return Concatenate()([alphas,*params])