-
Notifications
You must be signed in to change notification settings - Fork 2
/
DISP_SPI.ino
320 lines (245 loc) · 6.55 KB
/
DISP_SPI.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/********************************************************************************************************************
* DISPLAY VERT MULTISEGMENTS (9) FULLSCREEN SPI (experimental)
*
* longeur : 2 * 48 = 96 pixels
* largeur : 9 * 7 pixels
*
* pins :
* clock -> 4
* d -> 5
* data -> 6
*
* #TODO ##### ## Mapping de ports arduino :
* #--------------------------
* #PORTD maps to Arduino digital pins 0 to 7
* #PORTD - The Port D Data Register - read/write
* #
* #PORTB maps to Arduino digital pins 8 to 13 The two high bits (6 & 7) map to the crystal pins and are not usable
* #PORTB - The Port B Data Register - read/write
*
* #PORTD = B10101000; // sets digital pins 7,5,3 HIGH
* SPI Wiring of the arduino MEGA :
---------------------------------
* ICSP :
3 -> clock (blue)
5 -> data (white)
(1) O O
clk -- O O -- data
O O
* Digital pin 6 :
-> load (grey)
********************************************************************************************************************/
#include <SPI.h>
#include <digitalWriteFast.h>
//#ifdef VERTICAL_DISPLAY
#if (defined MULTI_SEGMENT_DISPLAY_FULLSCREEN && defined OUTPUT_SPI)
// DRIVER pins
// rouge (provient du blanc) // Slave Select
#define pin_load 6
// blanc (provient du bleu) // SCK
#define pin_clock 5
// noir (provient du jaune) // MOSI
#define pin_data 4
// GND -> rouge souple
void initlogicdisplay() {
// set the digital pin as output:
pinModeFast(pin_load, OUTPUT);
//pinMode(pin_clock, OUTPUT);
//pinMode(pin_data, OUTPUT);
/*
Mode Clock Polarity (CPOL) Clock Phase (CPHA)
SPI_MODE0 0 0
SPI_MODE1 0 1
SPI_MODE2 1 0
SPI_MODE3 1 1
*/
SPI.setDataMode(SPI_MODE1);
/*
Sets the SPI clock divider relative to the system clock. On AVR based boards, the dividers available are 2, 4, 8, 16, 32, 64 or 128.
The default setting is SPI_CLOCK_DIV4, which sets the SPI clock to one-quarter the frequency of the system clock (4 Mhz for the boards at 16 MHz).
SPI_CLOCK_DIV2
SPI_CLOCK_DIV4
SPI_CLOCK_DIV8
SPI_CLOCK_DIV16
SPI_CLOCK_DIV32
SPI_CLOCK_DIV64
SPI_CLOCK_DIV128
*/
//SPI.setClockDivider(SPI_CLOCK_DIV2); // optionel, pour les perturbations
SPI.begin();
// Timer1.initialize(20000); // set a timer of length 10000 microseconds (or 0.02 sec - or 50Hz => the led will blink 5 times, 5 cycles of on-and-off, per second)
// Timer1.initialize(1200); // set a timer of length 10000 microseconds (or 0.02 sec - or 50Hz => the led will blink 5 times, 5 cycles of on-and-off, per second)
Timer1.initialize(1200); // set a timer of length 10000 microseconds (or 0.02 sec - or 50Hz => the led will blink 5 times, 5 cycles of on-and-off, per second)
Timer1.attachInterrupt( displayTimerIsr ); // attach the service routine here
//currfb = 0;
//currfb_disp = 1;
}
short dispState = 0;
void displayTimerIsr() {
//noInterrupts();
//if( displayDirty) return;
/*
if( !VBLANK ) {
VBLANK = true;
return;
}
*/
//VBLANK = false;
/*
if( currfb == 0 ) currfb_disp = 1;
else currfb_disp = 0;
*/
int PAUSE = 1;
switch( dispState ) {
case( 0 ):
renderalllines( PAUSE, 0 );
case( 1 ):
break;
#if (BITPLANES >= 2)
case( 2 ):
renderalllines( PAUSE, 1 );
break;
case( 3 ):
case( 4 ):
break;
#endif
#if (BITPLANES >= 3)
case( 5 ):
renderalllines( PAUSE, 2 );
break;
case( 6 ):
case( 7 ):
case( 8 ):
case( 9 ):
case( 10 ):
case( 11 ):
break;
#endif
#if (BITPLANES >= 4)
case( 12 ):
renderalllines( PAUSE, 3 );
break;
case( 13 ):
case( 14 ):
case( 15 ):
case( 16 ):
case( 17 ):
case( 18 ):
case( 19 ):
break;
#endif
}
delayMicroseconds( PAUSE );
if( dispState >= 19) {
dispState = 0;
//VBLANK = true;
}
else {
dispState++;
//VBLANK = false;
}
//interrupts();
}
// render one bitplane -> 1 led segment
void renderalllines(int delayms, int bitplane) { // non testé
{
digitalWriteFast(pin_load, LOW);
for( int j=SEGMENTS_MINUS ; j >= 0 ; j-- ) {
digitalWrite(pin_load, LOW);
for( int i=XMAX_MINUS ; i >= 0 ; i-- ) {
// shiftOut(pin_data, pin_clock, MSBFIRST, virtualdisplay[bitplane][i] );
SPI.transfer( virtualdisplay[currfb_disp][j][bitplane][i] );
}
}
digitalWriteFast(pin_load, HIGH);
}
// WAIT FOR THE EYE TO SEE !
//delayMicroseconds( delayms );
}
void PulseClock() {
digitalWrite(pin_clock, HIGH);
//digitalWrite(pin_load, HIGH);
//delayMicroseconds( 1 );
digitalWrite(pin_clock, LOW);
// digitalWrite(pin_load, LOW);
//delayMicroseconds( 1 );
}
void render() {
//render( displayPause );
//renderall();
#ifdef MONOCHROM
render_fullscreen_mono();
#else
render( displayPause, 1 );
#endif
}
void render(int PAUSE) {
//render( PAUSE, 4);
//render( PAUSE, 4);
//renderalllines(0, 9);
//renderalllines(0, BITPLANES); // GOOD OR BUG ?
//renderalllines(0, BITPLANES-1);
//renderall();
}
void render(int PAUSE, int option) {
switch( option ) {
case 1 :
{
renderalllines( PAUSE, 0 );
renderalllines( 4*PAUSE, 1 );
renderalllines( 7*PAUSE, 2 );
renderalllines( 8*PAUSE, 3 );
break;
}
case 2 :
{
renderalllines( PAUSE, 0 );
renderalllines( PAUSE, 1 );
renderalllines( PAUSE, 1 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 3 );
break;
}
case 3 :
{
renderalllines( PAUSE, 0 );
renderalllines( 3*PAUSE, 1 );
renderalllines( 8*PAUSE, 2 );
renderalllines( 17*PAUSE, 3 );
break;
}
case 4 :
{
renderalllines( PAUSE, 0 );
renderalllines( 2*PAUSE, 1 );
renderalllines( 4*PAUSE, 2 );
renderalllines( 8*PAUSE, 3 );
break;
}
case 5 :
{
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 0 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 1 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 1 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 3 );
renderalllines( PAUSE, 2 );
renderalllines( PAUSE, 3 );
break;
}
}
}
#endif