-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathInstSyn.v
509 lines (403 loc) · 17.4 KB
/
InstSyn.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
Require Import ModelTheory.
(*Instantiate the syntax of First Order Theory with Presburger*)
Module PresburgerSyn <: TheorySyn.
Inductive foterm' :=
| Var' : nat -> foterm'
| Cst_0' : foterm'
| Cst_1' : foterm'
| Df_Add' : foterm' -> foterm' -> foterm'.
Definition foterm := foterm'.
Definition Var := Var'.
Definition Cst_0 := Cst_0'.
Definition Cst_1 := Cst_1'.
Definition Df_Add := Df_Add'.
Fixpoint lift_term_rec t n k:=
match t with
| Var i =>
match le_gt_dec k i with
| left _ => Var (i+n)
| right _ => Var i
end
| Cst_0 => Cst_0
| Cst_1 => Cst_1
| Df_Add u v => Df_Add (lift_term_rec u n k) (lift_term_rec v n k)
end.
Definition lift_term t n := lift_term_rec t n 0.
Fixpoint subst_term_rec M N n:=
match M with
| Var i =>
match lt_eq_lt_dec n i with
| inleft (left _) => Var (pred i)
| inleft (right _) => lift_term N n
| inright _ => Var i
end
| Cst_0 => Cst_0
| Cst_1 => Cst_1
| Df_Add M1 M2 => Df_Add (subst_term_rec M1 N n) (subst_term_rec M2 N n)
end.
Definition subst_term M N := subst_term_rec M N 0.
Fixpoint fv_term_rec t k : list nat :=
match t with
| Var n =>
match le_gt_dec k n with
| left _ => (n-k)::nil
| right _ => nil
end
| Cst_0 => nil
| Cst_1 => nil
| Df_Add M N => (fv_term_rec M k) ++ (fv_term_rec N k)
end.
Definition fv_term t := fv_term_rec t 0.
Inductive foformula' :=
| eq_foterm' : foterm -> foterm -> foformula'
| TF' : foformula'
| BF' : foformula'
| neg' : foformula' -> foformula'
| conj' : foformula' -> foformula' -> foformula'
| disj' : foformula' -> foformula' -> foformula'
| implf' : foformula' -> foformula' -> foformula'
| fall' : foformula' -> foformula'
| exst' : foformula' -> foformula'.
Definition foformula := foformula'.
Definition eq_foterm := eq_foterm'.
Definition TF := TF'.
Definition BF := BF'.
Definition neg := neg'.
Definition conj := conj'.
Definition disj := disj'.
Definition implf := implf'.
Definition fall := fall'.
Definition exst := exst'.
Fixpoint lift_fml_rec f n k:=
match f with
| eq_foterm x y => eq_foterm (lift_term_rec x n k) (lift_term_rec y n k)
| TF => TF
| BF => BF
| neg f' => neg (lift_fml_rec f' n k)
| conj A B => conj (lift_fml_rec A n k) (lift_fml_rec B n k)
| disj A B => disj (lift_fml_rec A n k) (lift_fml_rec B n k)
| implf A B => implf (lift_fml_rec A n k) (lift_fml_rec B n k)
| fall A => fall (lift_fml_rec A n (S k))
| exst A => exst (lift_fml_rec A n (S k))
end.
Definition lift_fml t n := lift_fml_rec t n 0.
Fixpoint subst_fml_rec f N n :=
match f with
| eq_foterm x y => eq_foterm (subst_term_rec x N n) (subst_term_rec y N n)
| TF => TF
| BF => BF
| neg f => neg (subst_fml_rec f N n)
| conj f1 f2 => conj (subst_fml_rec f1 N n) (subst_fml_rec f2 N n)
| disj f1 f2 => disj (subst_fml_rec f1 N n) (subst_fml_rec f2 N n)
| implf f1 f2 => implf (subst_fml_rec f1 N n) (subst_fml_rec f2 N n)
| fall f => fall (subst_fml_rec f N (S n))
| exst f => exst (subst_fml_rec f N (S n))
end.
Definition subst_fml f N := subst_fml_rec f N 0.
Fixpoint fv_fml_rec f k : list nat :=
match f with
| eq_foterm t1 t2 => (fv_term_rec t1 k) ++ (fv_term_rec t2 k)
| TF => nil
| BF => nil
| neg f0 => fv_fml_rec f0 k
| conj f1 f2 => (fv_fml_rec f1 k) ++ (fv_fml_rec f2 k)
| disj f1 f2 => (fv_fml_rec f1 k) ++ (fv_fml_rec f2 k)
| implf f1 f2 => (fv_fml_rec f1 k) ++ (fv_fml_rec f2 k)
| fall f0 => (fv_fml_rec f0 (S k))
| exst f0 => (fv_fml_rec f0 (S k))
end.
Definition fv_fml f := fv_fml_rec f 0.
Lemma fv_fml_eq_term : forall x y,
fv_fml (eq_foterm x y) = (fv_term x) ++ (fv_term y).
unfold fv_fml, fv_term; simpl; trivial.
Qed.
Lemma fv_fml_neg : forall f,
fv_fml (neg f) = fv_fml f.
unfold fv_fml; simpl; trivial.
Qed.
Lemma fv_fml_conj : forall x y,
fv_fml (conj x y) = (fv_fml x) ++ (fv_fml y).
unfold fv_fml; simpl; trivial.
Qed.
Lemma fv_fml_disj : forall x y,
fv_fml (disj x y) = (fv_fml x) ++ (fv_fml y).
unfold fv_fml; simpl; trivial.
Qed.
Lemma fv_fml_implf : forall x y,
fv_fml (implf x y) = (fv_fml x) ++ (fv_fml y).
unfold fv_fml; simpl; trivial.
Qed.
Lemma fv_fml_fall : forall f,
fv_fml (fall f) = (fv_fml_rec f 1).
unfold fv_fml; simpl; trivial.
Qed.
Lemma fv_fml_exst : forall f,
fv_fml (exst f) = (fv_fml_rec f 1).
unfold fv_fml; simpl; trivial.
Qed.
Definition hyp_ok_term (hyp:list (option foformula)) t :=
forall n, In n (fv_term t) -> nth_error hyp n = Some None.
Definition hyp_ok_fml (hyp:list (option foformula)) f :=
forall n, In n (fv_fml f) -> nth_error hyp n = Some None.
Definition ax hyp f :=
f = (fall (neg (eq_foterm Cst_0 (Df_Add (Var 0) Cst_1)))) \/
f = (fall (fall (implf (eq_foterm (Df_Add (Var 0) Cst_1)
(Df_Add (Var 1) Cst_1)) (eq_foterm (Var 0) (Var 1))))) \/
f = (fall (eq_foterm (Var 0) (Df_Add (Var 0) Cst_0))) \/
f = (fall(fall (eq_foterm (Df_Add (Df_Add (Var 0) (Var 1)) Cst_1)
(Df_Add (Var 0) (Df_Add (Var 1) (Cst_1)))))) \/
exists g, (hyp_ok_fml (None::hyp) g) /\ f = (implf (subst_fml g Cst_0)
(implf (fall (implf g
(subst_fml (lift_fml_rec g 1 1) (Df_Add (Var 0) Cst_1))))
(fall g))).
Inductive deriv : list (option foformula) -> foformula -> Prop :=
| hyp_judge : forall f hyp n,
nth_error hyp n = Some (Some f) ->
hyp_ok_fml hyp (lift_fml f (S n)) ->
deriv hyp (lift_fml f (S n))
| ax_intro : forall f hyp, ax hyp f -> deriv hyp f
| true_intro : forall hyp, deriv hyp TF
| false_elim : forall hyp f, deriv hyp BF -> hyp_ok_fml hyp f -> deriv hyp f
| neg_intro : forall hyp f, deriv hyp (implf f BF) -> deriv hyp (neg f)
| neg_elim : forall hyp f, deriv hyp (neg f) -> deriv hyp (implf f BF)
| conj_intro : forall hyp f1 f2,
deriv hyp f1 -> deriv hyp f2 -> deriv hyp (conj f1 f2)
| conj_elim1 : forall hyp f1 f2,
deriv hyp (conj f1 f2) -> deriv hyp f1
| conj_elim2 : forall hyp f1 f2,
deriv hyp (conj f1 f2) -> deriv hyp f2
| disj_intro1 : forall hyp f1 f2,
deriv hyp f1 -> hyp_ok_fml hyp f2 -> deriv hyp (disj f1 f2)
| disj_intro2 : forall hyp f1 f2,
hyp_ok_fml hyp f1 ->
deriv hyp f2 -> deriv hyp (disj f1 f2)
| disj_elim : forall hyp f1 f2 f3,
deriv hyp (disj f1 f2) -> deriv (Some f1::hyp) (lift_fml f3 1) ->
deriv (Some f2::hyp) (lift_fml f3 1) -> deriv hyp f3
| impl_intro : forall hyp f1 f2,
hyp_ok_fml hyp f1 ->
deriv ((Some f1)::hyp) (lift_fml f2 1) -> deriv hyp (implf f1 f2)
| impl_elim : forall hyp f1 f2,
deriv hyp (implf f1 f2) -> deriv hyp f1 -> deriv hyp f2
| fall_intro : forall hyp f,
deriv (None::hyp) f -> deriv hyp (fall f)
| fall_elim : forall hyp f u,
hyp_ok_term hyp u -> deriv hyp (fall f) -> deriv hyp (subst_fml f u)
| exst_intro : forall hyp f N, hyp_ok_term hyp N ->
deriv hyp (subst_fml f N) -> deriv hyp (exst f)
| exst_elim : forall hyp f f1,
deriv hyp (exst f) ->
deriv (Some f::None::hyp) (lift_fml f1 2) -> deriv hyp f1.
Lemma in_S_fv_term : forall t n k,
In (S n) (fv_term_rec t k) <->
In n (fv_term_rec t (S k)).
induction t; split; [| |contradiction|contradiction|contradiction|contradiction| |]; intros.
simpl in H. destruct (le_gt_dec k n); [|contradiction].
simpl in H. destruct H; [|contradiction].
assert (n = (S k + n0)) by omega.
subst n. unfold fv_term_rec.
case_eq (le_gt_dec (S k) (S k + n0)); intros; [simpl; left|]; omega.
unfold fv_term_rec in H.
case_eq (le_gt_dec (S k) n); intros; rewrite H0 in H; [|contradiction].
simpl in H. destruct H; [|contradiction].
assert (n = k + S n0) by omega.
subst n; unfold fv_term_rec.
destruct (le_gt_dec k (k + S n0)); [simpl; left|]; omega.
simpl in H |- *. rewrite in_app_iff in H |- *.
destruct H as [Hl|Hr]; [left; apply IHt1|right; apply IHt2]; trivial.
simpl in H |- *. rewrite in_app_iff in H |- *.
destruct H as [Hl|Hr]; [left; apply IHt1|right; apply IHt2]; trivial.
Qed.
Lemma in_S_fv_fml : forall f n k,
In (S n) (fv_fml_rec f k) <-> In n (fv_fml_rec f (S k)).
induction f; simpl; try reflexivity; trivial; intros; do 2 rewrite in_app_iff.
do 2 rewrite in_S_fv_term; reflexivity.
rewrite IHf1, IHf2; reflexivity.
rewrite IHf1, IHf2; reflexivity.
rewrite IHf1, IHf2; reflexivity.
Qed.
Lemma lift_term0 : forall t, lift_term t 0 = t.
induction t; intros; unfold lift_term; simpl; trivial.
apply f_equal; omega.
unfold lift_term in IHt1, IHt2; rewrite IHt1, IHt2; trivial.
Qed.
Lemma in_fv_term_lift : forall t n k k' k'',
In n (fv_term_rec (lift_term_rec t k' k'') (k+k'+k'')) <->
In n (fv_term_rec t (k+k'')).
induction t; simpl; intros; try reflexivity.
destruct (le_gt_dec k'' n) as [le|gt]; simpl.
destruct (le_gt_dec (k+k'+k'') (n+k')) as [le'|gt]; [simpl|].
destruct (le_gt_dec (k+k'') n) as [le''|gt]; [simpl|omega].
replace (n+k'-(k+k'+k'')) with (n-(k+k'')) by omega; reflexivity.
destruct (le_gt_dec (k+k'') n) as [le'|gt']; [omega|reflexivity].
destruct (le_gt_dec (k+k'+k'') n) as [le|gt']; [omega|].
destruct (le_gt_dec (k+k'') n) as [le|gt'']; [omega|reflexivity].
do 2 rewrite in_app_iff. rewrite IHt1, IHt2; reflexivity.
Qed.
Lemma in_fv_fml_lift : forall f n k k' k'',
In n (fv_fml_rec (lift_fml_rec f k' k'') (k+k'+k'')) <->
In n (fv_fml_rec f (k+k'')).
induction f; simpl; intros; try reflexivity; trivial.
do 2 rewrite in_app_iff. do 2 rewrite in_fv_term_lift; reflexivity.
do 2 rewrite in_app_iff. rewrite IHf1, IHf2; reflexivity.
do 2 rewrite in_app_iff. rewrite IHf1, IHf2; reflexivity.
do 2 rewrite in_app_iff. rewrite IHf1, IHf2; reflexivity.
replace (S (k + k'+ k'')) with (k + k' + S k'') by omega.
replace (S (k + k'')) with (k + S k'') by omega. apply IHf; trivial.
replace (S (k + k'+ k'')) with (k + k' + S k'') by omega.
replace (S (k + k'')) with (k + S k'') by omega. apply IHf; trivial.
Qed.
Lemma in_fv_term_subst_split : forall t n N k k',
In n (fv_term_rec (subst_term_rec t N k') (k+k')) ->
In n (fv_term_rec N k) \/ In (S n) (fv_term_rec t (k+k')).
induction t; intros.
unfold subst_term_rec in H |- *. simpl fv_term_rec at 2.
destruct (lt_eq_lt_dec k' n) as [[lt|eq]|gt].
unfold fv_term_rec in H; simpl in H.
destruct (le_gt_dec (k+k') (pred n)) as [le|gt]; [|contradiction].
simpl in H. destruct H; [right|contradiction].
destruct (le_gt_dec (k+k') n) as [le'|gt]; [simpl; left|]; omega.
subst n; left. unfold lift_term in H.
replace (k+k') with (k+k'+0) in H by omega.
apply (in_fv_term_lift _ _ k k' 0) in H.
replace (k+0) with k in H by omega; trivial.
simpl in H. destruct (le_gt_dec (k+k') n) as [le|gt']; [omega|contradiction].
simpl in H; contradiction.
simpl in H; contradiction.
simpl in H |- *. rewrite in_app_iff in H |- *. destruct H.
apply IHt1 in H. destruct H; [left|right; left]; trivial.
apply IHt2 in H. destruct H; [left|right; right]; trivial.
Qed.
Lemma in_fv_fml_subst_split : forall g n N k k',
In n (fv_fml_rec (subst_fml_rec g N k') (k+k')) ->
In n (fv_term_rec N k) \/ In (S n) (fv_fml_rec g (k+k')).
induction g; simpl; intros; try contradiction; trivial.
rewrite in_app_iff in H |- *.
destruct H as [H|H]; apply in_fv_term_subst_split in H.
destruct H; [left|right; left]; trivial.
destruct H; [left|right; right]; trivial.
apply IHg in H; trivial.
rewrite in_app_iff in H |- *. destruct H as [H|H]; [apply IHg1 in H|apply IHg2 in H].
destruct H; [left|right; left]; trivial.
destruct H; [left|right; right]; trivial.
rewrite in_app_iff in H |- *. destruct H as [H|H]; [apply IHg1 in H|apply IHg2 in H].
destruct H; [left|right; left]; trivial.
destruct H; [left|right; right]; trivial.
rewrite in_app_iff in H |- *. destruct H as [H|H]; [apply IHg1 in H|apply IHg2 in H].
destruct H; [left|right; left]; trivial.
destruct H; [left|right; right]; trivial.
replace (S (k + k')) with (k + S k') in H |- * by omega. apply IHg in H; trivial.
replace (S (k + k')) with (k + S k') in H |- * by omega. apply IHg in H; trivial.
Qed.
Lemma in_fv_term_subst : forall t n N k k',
In (S n) (fv_term_rec t (k+k')) ->
In n (fv_term_rec (subst_term_rec t N k') (k+k')).
induction t; simpl; intros; trivial.
destruct (le_gt_dec (k + k') n) as [le|gt]; [|contradiction].
simpl in H. destruct H; [|contradiction].
assert (n=S (k+k'+n0)) by omega.
subst n. destruct (lt_eq_lt_dec k' (S (k+k'+n0))) as [[lt|eq]|lt]; [simpl|omega|omega].
destruct (le_gt_dec (k + k') (k + k' + n0)) as [le'|gt]; [simpl; left|]; omega.
rewrite in_app_iff in H |- *. destruct H; [left; apply IHt1|right; apply IHt2]; trivial.
Qed.
Lemma in_fv_fml_subst : forall f n N k k',
In (S n) (fv_fml_rec f (k+k')) ->
In n (fv_fml_rec (subst_fml_rec f N k') (k+k')).
induction f; simpl; intros; trivial.
rewrite in_app_iff in H |- *.
destruct H; [left|right]; apply in_fv_term_subst; trivial.
apply IHf; trivial.
rewrite in_app_iff in H |- *.
destruct H; [left; apply IHf1|right; apply IHf2]; trivial.
rewrite in_app_iff in H |- *.
destruct H; [left; apply IHf1|right; apply IHf2]; trivial.
rewrite in_app_iff in H |- *.
destruct H; [left; apply IHf1|right; apply IHf2]; trivial.
replace (S (k + k')) with (k + S k') in H |- * by omega. apply IHf; trivial.
replace (S (k + k')) with (k + S k') in H |- * by omega. apply IHf; trivial.
Qed.
Lemma lift_term_split : forall t n k,
lift_term_rec t (S n) k = lift_term_rec (lift_term_rec t n k) 1 k.
induction t; trivial; unfold lift_term in *; simpl; intros.
destruct (le_gt_dec k n) as [le|gt]; simpl.
destruct (le_gt_dec k (n+n0)) as [le'|gt]; simpl; [apply f_equal|]; omega.
destruct (le_gt_dec k n) as [le|gt']; simpl; [omega|trivial].
rewrite IHt1, IHt2; trivial.
Qed.
Lemma lift_fml_split : forall f n k,
lift_fml_rec f (S n) k = lift_fml_rec (lift_fml_rec f n k) 1 k.
induction f; trivial; unfold lift_fml in *; simpl; intros.
rewrite lift_term_split with (t:=f).
rewrite lift_term_split with (t:=f0); trivial.
rewrite IHf; trivial.
rewrite IHf1, IHf2; trivial.
rewrite IHf1, IHf2; trivial.
rewrite IHf1, IHf2; trivial.
rewrite IHf; trivial.
rewrite IHf; trivial.
Qed.
Lemma hyp_ok_weakening : forall hyp t f',
hyp_ok_fml (t :: hyp) (lift_fml f' 1) ->
hyp_ok_fml hyp f'.
intros; red in H |- *; intros. specialize H with (n:= S n).
unfold fv_fml in H, H0. rewrite in_S_fv_fml in H.
unfold lift_fml in H. replace 1 with (0+1+0) in H by omega.
rewrite in_fv_fml_lift in H. simpl in H. apply H in H0; trivial.
Qed.
Lemma deriv_well_typed : forall hyp f, deriv hyp f -> hyp_ok_fml hyp f.
induction 1; trivial.
destruct H as [H|[H|[H|[H|(g, (H', H))]]]]; subst f;
try (red; intros; simpl in H; contradiction).
red in H' |- *; intros. unfold fv_fml in H; simpl in H.
apply in_app_or in H. destruct H.
unfold subst_fml in H. apply (in_fv_fml_subst_split _ _ _ 0 0) in H.
simpl in H. destruct H; [contradiction|apply H' in H; simpl in H; trivial].
apply in_app_or in H. destruct H.
apply in_app_or in H. destruct H.
apply in_S_fv_fml in H. apply H' in H. simpl in H; trivial.
unfold subst_fml in H. apply (in_fv_fml_subst_split _ _ _ 1 0) in H.
simpl in H. destruct H; [contradiction|].
rewrite in_S_fv_fml in H. replace 2 with (0+1+1) in H by omega.
apply in_fv_fml_lift in H. simpl in H. rewrite <- in_S_fv_fml in H.
apply H' in H; simpl in H; trivial.
rewrite <- in_S_fv_fml in H. apply H' in H; simpl in H; trivial.
red; simpl; intros; contradiction.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl in IHderiv |- *.
intros; apply IHderiv. rewrite app_nil_r; trivial.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl in IHderiv |- *.
intros; apply IHderiv. rewrite app_nil_r in H0; trivial.
red in IHderiv1, IHderiv2 |- *. unfold fv_fml in IHderiv1, IHderiv2 |- *.
simpl; intros. apply in_app_iff in H1.
destruct H1; [apply IHderiv1|apply IHderiv2]; trivial.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl in IHderiv.
intros; apply IHderiv. rewrite in_app_iff; left; trivial.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl in IHderiv.
intros; apply IHderiv. rewrite in_app_iff; right; trivial.
red in IHderiv, H0 |- *. unfold fv_fml in IHderiv, H0 |- *.
simpl; intros. apply in_app_iff in H1.
destruct H1; [apply IHderiv|apply H0]; trivial.
red in IHderiv, H |- *. unfold fv_fml in IHderiv, H |- *.
simpl; intros. apply in_app_iff in H1.
destruct H1; [apply H|apply IHderiv]; trivial.
apply hyp_ok_weakening in IHderiv2; trivial.
apply hyp_ok_weakening in IHderiv.
red in IHderiv, H |- *. unfold fv_fml in IHderiv, H |- *. simpl; intros.
rewrite in_app_iff in H1. destruct H1; [apply H in H1|apply IHderiv in H1]; trivial.
red in IHderiv1 |- *. unfold fv_fml in IHderiv1 |- *. intros; apply IHderiv1.
simpl; rewrite in_app_iff; right; trivial.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl; intros.
rewrite <- in_S_fv_fml in H0. apply IHderiv in H0. simpl in H0; trivial.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl; intros.
simpl in IHderiv. unfold subst_fml in H1.
replace 0 with (0+0) in H1 by omega. apply in_fv_fml_subst_split in H1.
destruct H1; [apply H in H1
|rewrite in_S_fv_fml in H1; simpl in H1; apply IHderiv in H1]; trivial.
red in IHderiv |- *. unfold fv_fml in IHderiv |- *. simpl in IHderiv |- *.
intros; apply IHderiv. rewrite <- in_S_fv_fml in H1.
unfold subst_fml. replace 0 with (0+0) in H1 |- * by omega.
apply in_fv_fml_subst; trivial.
unfold lift_fml in IHderiv2. rewrite lift_fml_split in IHderiv2.
fold (lift_fml f1 1) in IHderiv2. fold (lift_fml (lift_fml f1 1) 1) in IHderiv2.
apply hyp_ok_weakening in IHderiv2. apply hyp_ok_weakening in IHderiv2; trivial.
Qed.
End PresburgerSyn.