forked from enockappiahtieku/numeralbank-analysed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlexibank_numeralbank_analysed.py
386 lines (346 loc) · 14.3 KB
/
lexibank_numeralbank_analysed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import json
import pathlib
import subprocess
from collections import defaultdict
import attr
import pycldf
from cldfzenodo import oai_lexibank
from cldfzenodo.record import GithubRepos
from clldutils.misc import slug
from cltoolkit import Wordlist
from git import Repo, GitCommandError
from pylexibank import Dataset as BaseDataset
from pylexibank import Language, Lexeme
from pylexibank import progressbar
from unidecode import unidecode
def simple_chars(chars):
return slug(unidecode(chars).replace("@", "a"))
@attr.s
class CustomLexeme(Lexeme):
NumberValue = attr.ib(default=None, metadata={"datatype": "integer"})
@attr.s
class CustomLanguage(Language):
BaseAnnotation = attr.ib(default=None)
BaseAnnotator = attr.ib(default=None)
BaseComment = attr.ib(default=None)
Coverage = attr.ib(
default=None,
metadata={
"datatype": "float",
"dc:description": "Coverage of the language in comparison with our master concept list.",
},
)
OneToThirty = attr.ib(default=None, metadata={"datatype": "float"})
BaseInSource = attr.ib(default=None)
def coverage(language, concepts):
return len([c.id for c in language.concepts if c.id in concepts]) / len(concepts)
def git_last_commit_date(p, git_command="git"):
p = pathlib.Path(p)
if not p.exists():
raise ValueError("cannot read from non-existent directory")
p = p.resolve()
cmd = [
git_command,
"--git-dir={0}".format(p.joinpath(".git")),
"--no-pager",
"log",
"-1",
'--format="%ai"',
]
try:
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
if p.returncode == 0:
res = stdout.strip() # pragma: no cover
else:
raise ValueError(stderr)
except (ValueError, FileNotFoundError):
return ""
if not isinstance(res, str):
res = res.decode("utf8")
return res.replace('"', "")
class Dataset(BaseDataset):
dir = pathlib.Path(__file__).parent
id = "numeralbank-analysed"
language_class = CustomLanguage
lexeme_class = CustomLexeme
def cmd_download(self, args):
self.dataset_meta = {
r["ID"]: r["URL"]
for r in self.etc_dir.read_csv("datasets.tsv", delimiter="\t", dicts=True)
}
github_info = {rec.doi: rec.github_repos for rec in oai_lexibank()}
for dataset, src in self.dataset_meta.items():
ghinfo = github_info[src] if src in github_info else GithubRepos.from_url(src)
args.log.info("Checking {}".format(dataset))
dest = self.raw_dir / dataset
# download data
if dest.exists():
args.log.info("... dataset already exists, pulling changes")
for remote in Repo(str(dest)).remotes:
remote.fetch()
else:
args.log.info("... cloning {}".format(dataset))
try:
Repo.clone_from(ghinfo.clone_url, str(dest))
except GitCommandError as e:
args.log.error("... download failed\n{}".format(str(e)))
continue
# check out release (fall back to master branch)
repo = Repo(str(dest))
if ghinfo.tag:
args.log.info("... checking out tag {}".format(ghinfo.tag))
repo.git.checkout(ghinfo.tag)
else:
args.log.warning("... could not determine tag to check out")
args.log.info("... checking out master")
try:
branch = repo.branches.main
branch.checkout()
except AttributeError:
try:
branch = repo.branches.master
branch.checkout()
except AttributeError:
args.log.error("found neither main nor master branch")
repo.git.merge()
def cmd_makecldf(self, args):
args.writer.add_sources()
all_concepts = {
concept["CONCEPTICON_GLOSS"]: concept["NUMBER_VALUE"] for concept in self.concepts
}
datasets = {
r["ID"]: (r["Source"], r["URL"])
for r in self.etc_dir.read_csv("datasets.tsv", delimiter="\t", dicts=True)
}
args.writer.cldf.add_component(
"ContributionTable",
{
"datatype": "string",
"name": "Metadata",
"dc:description": "JSON encoded metadata of used datasets",
},
)
for c in ["Description", "Contributor"]:
args.writer.cldf.remove_columns("ContributionTable", c)
for ds, (src, url) in datasets.items():
cldf_path = self.raw_dir.joinpath(ds, "cldf", "cldf-metadata.json")
with open(cldf_path) as f:
js = json.load(f)
doi = None
git_version = None
if "github.com" in url.lower():
accessURL = url
git_version = git_last_commit_date(cldf_path.parent.parent)
else:
doi = url
accessURL = "https://doi.org/{0}".format(doi)
args.writer.objects["contributions.csv"].append(
dict(
ID=js["rdf:ID"],
Name=js["dc:title"],
Citation=js["dc:bibliographicCitation"],
Metadata=json.dumps(
{
"dcat:accessURL": accessURL,
"dc:description": js.get("dc:description", None),
"dc:license": js.get("dc:license", None),
"aboutUrl": js.get("aboutUrl", None),
"doi": doi,
"git_version": git_version,
"source": src,
}
),
)
)
wl = Wordlist(
[
pycldf.Dataset.from_metadata(
self.raw_dir.joinpath(ds, "cldf", "cldf-metadata.json")
)
for ds in datasets
]
)
# get base info from the external document
base_info = {}
for row in self.etc_dir.read_csv("bases.tsv", delimiter="\t", dicts=True):
if row["Annotator"] == "Russell Barlow":
row["Comment"] = ""
if row["Language_ID"]:
base_info[row["Language_ID"]] = row
else:
base_info[row["Glottocode"]] = row
args.log.info("loaded base info")
# filter languages (only those with glottocodes)
# select first all language which occur only in one dataset
# otherwise select languages having the best coverage excluding googleuninum
map_glottocode_nr_of_sources = defaultdict(int)
for language in wl.languages:
if language.glottocode is not None:
map_glottocode_nr_of_sources[language.glottocode] += 1
selected_languages = []
visited = set()
for language in sorted(wl.languages, key=lambda x: coverage(x, all_concepts), reverse=True):
#if language.glottocode is not None and (
# map_glottocode_nr_of_sources[language.glottocode] == 1
# or (language.glottocode not in visited and language.dataset != "googleuninum")
#):
if language.glottocode is not None:
visited.add(language.glottocode)
selected_languages += [language]
one_to_forty = [
concept["CONCEPTICON_GLOSS"]
for concept in self.concepts
if concept["TEST"] in ["1", "2"]
]
one_to_thirty = [
concept["CONCEPTICON_GLOSS"] for concept in self.concepts if concept["TEST"] in ["1"]
]
for concept in wl.concepts:
args.writer.add_concept(
ID=slug(concept.id),
Name=concept.id,
Concepticon_ID=concept.concepticon_id,
Concepticon_Gloss=concept.id,
)
with open(self.raw_dir.joinpath("unique_relations.json")) as f:
relations = json.load(f)
# relations conversion for our detection method
convert = {
"Tener": "decimal",
"Twoer": "binary",
"Twentier": "vigesimal",
"Fiver": "quinary",
"Unknown": "unknown",
}
# how to represent basic relations in Chan, which are frequent enough
# in the data
target_bases = {
"Decimal": "decimal",
"decimal": "decimal",
"Decimal-Vigesimal": "decimal/vigesimal",
"Vigesimal": "vigesimal",
"Restricted": "restricted",
"vigesimal": "vigesimal",
"quinary": "quinary",
"quinary AND decimal": "quinary",
"quinary AND vigesimal": "quinary",
"quinary AND decimal AND vigesimal": "quinary",
"binary": "binary",
"decimal AND vigesimal": "decimal/vigesimal",
"decimal OR vigesimal": "decimal/vigesimal",
"duodecimal": "duodecimal",
"octal": "octal",
"quinary OR decimal": "quinary/decimal",
"quinary AND vigesimal OR decimal": "quinary/vigesimal",
"quinary AND double decimal": "quinary/decimal",
"octal AND decimal": "octal",
"octal AND duodecimal AND hexadecimal AND vigesimal AND tetravigesimal": "octal",
"octogesimal": "octogesimal",
"trigesimal": "trigesimal",
"quinquagesimal": "quinquagesimal",
"pentadecimal OR pentavigesimal": "pentadecimal/pentavigesimal",
"pentavigesimal": "pentavigesimal",
}
valid_bases = set(
[
"binary",
"decimal",
"mixed",
"decimal/vigesimal",
"duodecimal",
"octal",
"octogesimal",
"pentadecimal/pentavigesimal",
"pentavigesimal",
"quaternary",
"quinary",
"quinary/decimal",
"quinquagesimal",
"restricted",
"senary",
"trigesimal",
"vigesimal",
]
)
base_errors = set()
for language in progressbar(
sorted(selected_languages, key=lambda x: x.glottocode),
desc="Processing {} selected languages".format(len(selected_languages)),
):
# check for sufficient coverage
cov_ = coverage(language, all_concepts)
cov1 = coverage(language, one_to_forty)
cov2 = coverage(language, one_to_thirty)
# retrieve annotated base
if language.id in base_info:
annotated_base, annotator, cmt = (
target_bases.get(
base_info[language.id]["Base"], base_info[language.id]["Base"]
),
base_info[language.id]["Annotator"],
base_info[language.id]["Comment"],
)
elif language.glottocode in base_info:
annotated_base, annotator, cmt = (
target_bases.get(
base_info[language.glottocode]["Base"],
base_info[language.glottocode]["Base"],
),
base_info[language.glottocode]["Annotator"],
base_info[language.glottocode]["Comment"],
)
else:
if language.dataset == "numerals":
annotated_base = target_bases.get(language.data["Base"], language.data["Base"])
annotator, cmt = "Eugene Chan", ""
elif language.dataset == "sand":
annotated_base = target_bases.get(language.data["Base"], language.data["Base"])
annotator, cmt = "Mamta Kumari", ""
else:
annotated_base, annotator, cmt = "", "", ""
# check for type
if annotated_base and annotated_base not in valid_bases:
if annotated_base.lower() != "unknown":
base_errors.add((language.id, annotated_base, annotator))
annotated_base, annotator, cmt = "", "", ""
if 'Comment' in language.data and language.data['Comment']:
if cmt:
cmt += '; '
cmt += language.data['Comment']
args.writer.add_language(
ID=language.id,
Name=language.name,
Glottocode=language.glottocode,
Latitude=language.latitude,
Longitude=language.longitude,
Macroarea=language.macroarea,
BaseAnnotation=annotated_base,
BaseAnnotator=annotator,
BaseComment=cmt,
Coverage=cov_,
OneToThirty=cov2,
)
for concept in language.concepts:
if concept.id in all_concepts:
for form in concept.forms:
args.writer.add_form(
Language_ID=language.id,
Parameter_ID=slug(concept.id),
Value=form.value,
Form=simple_chars(form.form),
Loan=form.data["Loan"],
Source=datasets[language.dataset][0],
NumberValue=all_concepts[concept.id],
Comment=form.data["Comment"].strip() if form.data["Comment"] is not None else None,
)
counts = defaultdict(int)
with open(self.dir.joinpath("base_errors.md"), "w") as f:
f.write("Language | Annotation | Annotator\n--- | --- | ---\n")
for a, b, c in sorted(base_errors):
f.write("{0} | {1} | {2}\n".format(a, b, c))
counts[b, c] += 1
for (a, b), c in counts.items():
args.log.info(
"Problematic annotation {0:40} by {1:20} occurs {2} times.".format(a, b, c)
)