diff --git a/main/schema/defaults.json b/main/schema/defaults.json index ae4af6582..77ceed301 100644 --- a/main/schema/defaults.json +++ b/main/schema/defaults.json @@ -920,6 +920,13 @@ "additionalProperties": true, "description": "Settings specific to producers.", "properties": { + "imageTag": { + "default": "latest", + "description": "Docker image tag of the streams-bootstrap app.", + "pattern": "^[a-zA-Z0-9_][a-zA-Z0-9._-]{0,127}$", + "title": "Imagetag", + "type": "string" + }, "nameOverride": { "anyOf": [ { @@ -1273,6 +1280,13 @@ "default": null, "description": "Kubernetes event-driven autoscaling config" }, + "imageTag": { + "default": "latest", + "description": "Docker image tag of the streams-bootstrap app.", + "pattern": "^[a-zA-Z0-9_][a-zA-Z0-9._-]{0,127}$", + "title": "Imagetag", + "type": "string" + }, "nameOverride": { "anyOf": [ { @@ -1328,10 +1342,10 @@ "app": { "allOf": [ { - "$ref": "#/$defs/HelmAppValues" + "$ref": "#/$defs/StreamsBootstrapValues" } ], - "description": "Helm app values" + "description": "streams-bootstrap app values" }, "from": { "anyOf": [ @@ -1409,12 +1423,40 @@ }, "required": [ "name", - "namespace", - "app" + "namespace" ], "title": "StreamsBootstrap", "type": "object" }, + "StreamsBootstrapValues": { + "additionalProperties": true, + "description": "Base value class for all streams bootstrap related components.", + "properties": { + "imageTag": { + "default": "latest", + "description": "Docker image tag of the streams-bootstrap app.", + "pattern": "^[a-zA-Z0-9_][a-zA-Z0-9._-]{0,127}$", + "title": "Imagetag", + "type": "string" + }, + "nameOverride": { + "anyOf": [ + { + "maxLength": 63, + "type": "string" + }, + { + "type": "null" + } + ], + "default": null, + "description": "Helm chart name override, assigned automatically", + "title": "Nameoverride" + } + }, + "title": "StreamsBootstrapValues", + "type": "object" + }, "StreamsConfig": { "additionalProperties": true, "description": "Streams Bootstrap streams section.", diff --git a/main/schema/pipeline.json b/main/schema/pipeline.json index ea33470b3..d8c953c82 100644 --- a/main/schema/pipeline.json +++ b/main/schema/pipeline.json @@ -588,6 +588,13 @@ "additionalProperties": true, "description": "Settings specific to producers.", "properties": { + "imageTag": { + "default": "latest", + "description": "Docker image tag of the streams-bootstrap app.", + "pattern": "^[a-zA-Z0-9_][a-zA-Z0-9._-]{0,127}$", + "title": "Imagetag", + "type": "string" + }, "nameOverride": { "anyOf": [ { @@ -941,6 +948,13 @@ "default": null, "description": "Kubernetes event-driven autoscaling config" }, + "imageTag": { + "default": "latest", + "description": "Docker image tag of the streams-bootstrap app.", + "pattern": "^[a-zA-Z0-9_][a-zA-Z0-9._-]{0,127}$", + "title": "Imagetag", + "type": "string" + }, "nameOverride": { "anyOf": [ { diff --git a/main/search/search_index.json b/main/search/search_index.json index 3734d9325..59997e186 100644 --- a/main/search/search_index.json +++ b/main/search/search_index.json @@ -1 +1 @@ -{"config": {"lang": ["en"], "separator": "[\\s\\-]+", "pipeline": ["stopWordFilter"]}, "docs": [{"location": "developer/api/", "title": "Python API", "text": ""}, {"location": "developer/api/#kpops.api", "title": "kpops.api", "text": ""}, {"location": "developer/api/#kpops.api.clean", "title": "clean", "text": "
clean(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Clean pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def clean(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Clean pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def clean_runner(component: PipelineComponent):\n await component.destroy(dry_run)\n log_action(\"Clean\", component)\n await component.clean(dry_run)\n\n async def async_clean():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(clean_runner, reverse=True)\n await pipeline_tasks\n else:\n for component in reversed(pipeline.components):\n await clean_runner(component)\n\n asyncio.run(async_clean())\n
"}, {"location": "developer/api/#kpops.api.deploy", "title": "deploy", "text": "deploy(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Deploy pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def deploy(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Deploy pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def deploy_runner(component: PipelineComponent):\n log_action(\"Deploy\", component)\n await component.deploy(dry_run)\n\n async def async_deploy():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(deploy_runner)\n await pipeline_tasks\n else:\n for component in pipeline.components:\n await deploy_runner(component)\n\n asyncio.run(async_deploy())\n
"}, {"location": "developer/api/#kpops.api.destroy", "title": "destroy", "text": "destroy(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Destroy pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def destroy(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Destroy pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def destroy_runner(component: PipelineComponent):\n log_action(\"Destroy\", component)\n await component.destroy(dry_run)\n\n async def async_destroy():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(\n destroy_runner, reverse=True\n )\n await pipeline_tasks\n else:\n for component in reversed(pipeline.components):\n await destroy_runner(component)\n\n asyncio.run(async_destroy())\n
"}, {"location": "developer/api/#kpops.api.generate", "title": "generate", "text": "generate(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, verbose: bool = False) -> Pipeline\n
Generate enriched pipeline representation.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: False
Pipeline
Generated Pipeline
object.
kpops/api/__init__.py
def generate(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n verbose: bool = False,\n) -> Pipeline:\n \"\"\"Generate enriched pipeline representation.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :return: Generated `Pipeline` object.\n \"\"\"\n kpops_config = KpopsConfig.create(\n config,\n dotenv,\n environment,\n verbose,\n )\n pipeline = _create_pipeline(pipeline_path, kpops_config, environment)\n log.info(f\"Picked up pipeline '{pipeline_path.parent.name}'\")\n if steps:\n component_names = steps\n log.debug(\n f\"KPOPS_PIPELINE_STEPS is defined with values: {component_names} and filter type of {filter_type.value}\"\n )\n\n predicate = filter_type.create_default_step_names_filter_predicate(\n component_names\n )\n pipeline.filter(predicate)\n log.info(f\"Filtered pipeline:\\n{pipeline.step_names}\")\n return pipeline\n
"}, {"location": "developer/api/#kpops.api.init", "title": "init", "text": "init(path: Path, config_include_opt: bool = False)\n
Initiate a default empty project.
PARAMETER DESCRIPTIONpath
Directory in which the project should be initiated.
TYPE: Path
conf_incl_opt
Whether to include non-required settings in the generated config file.
Source code in
kpops/api/__init__.py
def init(\n path: Path,\n config_include_opt: bool = False,\n):\n \"\"\"Initiate a default empty project.\n\n :param path: Directory in which the project should be initiated.\n :param conf_incl_opt: Whether to include non-required settings\n in the generated config file.\n \"\"\"\n if not path.exists():\n path.mkdir(parents=False)\n elif next(path.iterdir(), False):\n log.warning(\"Please provide a path to an empty directory.\")\n return\n init_project(path, config_include_opt)\n
"}, {"location": "developer/api/#kpops.api.manifest", "title": "manifest", "text": "manifest(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, verbose: bool = False) -> list[Resource]\n
Generate pipeline, return final resource representations for each step.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: False
list[Resource]
Resources.
Source code inkpops/api/__init__.py
def manifest(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n verbose: bool = False,\n) -> list[Resource]:\n \"\"\"Generate pipeline, return final resource representations for each step.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :return: Resources.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n resources: list[Resource] = []\n for component in pipeline.components:\n resource = component.manifest()\n resources.append(resource)\n return resources\n
"}, {"location": "developer/api/#kpops.api.reset", "title": "reset", "text": "reset(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Reset pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def reset(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Reset pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def reset_runner(component: PipelineComponent):\n await component.destroy(dry_run)\n log_action(\"Reset\", component)\n await component.reset(dry_run)\n\n async def async_reset():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(reset_runner, reverse=True)\n await pipeline_tasks\n else:\n for component in reversed(pipeline.components):\n await reset_runner(component)\n\n asyncio.run(async_reset())\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline", "title": "kpops.pipeline.Pipeline", "text": " Bases: BaseModel
Pipeline representation.
Source code inkpops/pipeline.py
class Pipeline(BaseModel):\n \"\"\"Pipeline representation.\"\"\"\n\n _component_index: dict[str, PipelineComponent] = {}\n _graph: nx.DiGraph = nx.DiGraph()\n\n model_config = ConfigDict(arbitrary_types_allowed=True)\n\n @property\n def step_names(self) -> list[str]:\n return [step.name for step in self.components]\n\n @computed_field(title=\"Components\")\n @property\n def components(self) -> list[SerializeAsAny[PipelineComponent]]:\n return list(self._component_index.values())\n\n @property\n def last(self) -> PipelineComponent:\n return self.components[-1]\n\n def add(self, component: PipelineComponent) -> None:\n if self._component_index.get(component.id) is not None:\n msg = (\n f\"Pipeline steps must have unique id, '{component.id}' already exists.\"\n )\n raise ValidationError(msg)\n self._component_index[component.id] = component\n self.__add_to_graph(component)\n\n def remove(self, component_id: str) -> None:\n self._component_index.pop(component_id)\n\n def get(self, component_id: str) -> PipelineComponent | None:\n return self._component_index.get(component_id)\n\n def find(self, predicate: ComponentFilterPredicate) -> Iterator[PipelineComponent]:\n \"\"\"Find pipeline components matching a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n :returns: Iterator of components matching the predicate\n \"\"\"\n for component in self.components:\n if predicate(component):\n yield component\n\n def filter(self, predicate: ComponentFilterPredicate) -> None:\n \"\"\"Filter pipeline components using a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n \"\"\"\n for component in self.components:\n # filter out components not matching the predicate\n if not predicate(component):\n self.remove(component.id)\n\n def validate(self) -> None: # pyright: ignore [reportIncompatibleMethodOverride]\n self.__validate_graph()\n\n def to_yaml(self) -> str:\n return yaml.dump(\n self.model_dump(mode=\"json\", by_alias=True, exclude_none=True)[\"components\"]\n )\n\n def build_execution_graph(\n self,\n runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]],\n /,\n reverse: bool = False,\n ) -> Awaitable[None]:\n async def run_parallel_tasks(\n coroutines: list[Coroutine[Any, Any, None]],\n ) -> None:\n tasks = []\n for coro in coroutines:\n tasks.append(asyncio.create_task(coro))\n await asyncio.gather(*tasks)\n\n async def run_graph_tasks(pending_tasks: list[Awaitable[None]]) -> None:\n for pending_task in pending_tasks:\n await pending_task\n\n graph: nx.DiGraph = self._graph.copy() # pyright: ignore[reportAssignmentType, reportGeneralTypeIssues] imprecise type hint in networkx\n\n # We add an extra node to the graph, connecting all the leaf nodes to it\n # in that way we make this node the root of the graph, avoiding backtracking\n root_node = \"root_node_bfs\"\n graph.add_node(root_node)\n\n for node in graph:\n predecessors = list(graph.predecessors(node))\n if not predecessors:\n graph.add_edge(root_node, node)\n\n layers_graph: list[list[str]] = list(nx.bfs_layers(graph, root_node))\n\n sorted_tasks = []\n for layer in layers_graph[1:]:\n if parallel_tasks := self.__get_parallel_tasks_from(layer, runner):\n sorted_tasks.append(run_parallel_tasks(parallel_tasks))\n\n if reverse:\n sorted_tasks.reverse()\n\n return run_graph_tasks(sorted_tasks)\n\n def __getitem__(self, component_id: str) -> PipelineComponent:\n try:\n return self._component_index[component_id]\n except KeyError as exc:\n msg = f\"Component {component_id} not found\"\n raise ValueError(msg) from exc\n\n def __bool__(self) -> bool:\n return bool(self._component_index)\n\n def __iter__(self) -> Iterator[PipelineComponent]: # pyright: ignore [reportIncompatibleMethodOverride]\n yield from self._component_index.values()\n\n def __len__(self) -> int:\n return len(self.components)\n\n def __add_to_graph(self, component: PipelineComponent):\n self._graph.add_node(component.id)\n\n for input_topic in component.inputs:\n self.__add_input(input_topic.id, component.id)\n\n for output_topic in component.outputs:\n self.__add_output(output_topic.id, component.id)\n\n def __add_output(self, topic_id: str, source: str) -> None:\n self._graph.add_node(topic_id)\n self._graph.add_edge(source, topic_id)\n\n def __add_input(self, topic_id: str, target: str) -> None:\n self._graph.add_node(topic_id)\n self._graph.add_edge(topic_id, target)\n\n def __get_parallel_tasks_from(\n self,\n layer: list[str],\n runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]],\n ) -> list[Coroutine[Any, Any, None]]:\n def gen_parallel_tasks():\n for node_in_layer in layer:\n # check if component, skip topics\n if (component := self._component_index.get(node_in_layer)) is not None:\n yield runner(component)\n\n return list(gen_parallel_tasks())\n\n def __validate_graph(self) -> None:\n if not nx.is_directed_acyclic_graph(self._graph):\n msg = \"Pipeline is not a valid DAG.\"\n raise ValueError(msg)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.components", "title": "components property
", "text": "components: list[SerializeAsAny[PipelineComponent]]\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.last", "title": "last property
", "text": "last: PipelineComponent\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.step_names", "title": "step_names property
", "text": "step_names: list[str]\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.add", "title": "add", "text": "add(component: PipelineComponent) -> None\n
Source code in kpops/pipeline.py
def add(self, component: PipelineComponent) -> None:\n if self._component_index.get(component.id) is not None:\n msg = (\n f\"Pipeline steps must have unique id, '{component.id}' already exists.\"\n )\n raise ValidationError(msg)\n self._component_index[component.id] = component\n self.__add_to_graph(component)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.build_execution_graph", "title": "build_execution_graph", "text": "build_execution_graph(runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]], /, reverse: bool = False) -> Awaitable[None]\n
Source code in kpops/pipeline.py
def build_execution_graph(\n self,\n runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]],\n /,\n reverse: bool = False,\n) -> Awaitable[None]:\n async def run_parallel_tasks(\n coroutines: list[Coroutine[Any, Any, None]],\n ) -> None:\n tasks = []\n for coro in coroutines:\n tasks.append(asyncio.create_task(coro))\n await asyncio.gather(*tasks)\n\n async def run_graph_tasks(pending_tasks: list[Awaitable[None]]) -> None:\n for pending_task in pending_tasks:\n await pending_task\n\n graph: nx.DiGraph = self._graph.copy() # pyright: ignore[reportAssignmentType, reportGeneralTypeIssues] imprecise type hint in networkx\n\n # We add an extra node to the graph, connecting all the leaf nodes to it\n # in that way we make this node the root of the graph, avoiding backtracking\n root_node = \"root_node_bfs\"\n graph.add_node(root_node)\n\n for node in graph:\n predecessors = list(graph.predecessors(node))\n if not predecessors:\n graph.add_edge(root_node, node)\n\n layers_graph: list[list[str]] = list(nx.bfs_layers(graph, root_node))\n\n sorted_tasks = []\n for layer in layers_graph[1:]:\n if parallel_tasks := self.__get_parallel_tasks_from(layer, runner):\n sorted_tasks.append(run_parallel_tasks(parallel_tasks))\n\n if reverse:\n sorted_tasks.reverse()\n\n return run_graph_tasks(sorted_tasks)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.filter", "title": "filter", "text": "filter(predicate: ComponentFilterPredicate) -> None\n
Filter pipeline components using a custom predicate.
PARAMETER DESCRIPTIONpredicate
Filter function, returns boolean value whether the component should be kept or removed
TYPE: ComponentFilterPredicate
kpops/pipeline.py
def filter(self, predicate: ComponentFilterPredicate) -> None:\n \"\"\"Filter pipeline components using a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n \"\"\"\n for component in self.components:\n # filter out components not matching the predicate\n if not predicate(component):\n self.remove(component.id)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.find", "title": "find", "text": "find(predicate: ComponentFilterPredicate) -> Iterator[PipelineComponent]\n
Find pipeline components matching a custom predicate.
PARAMETER DESCRIPTIONpredicate
Filter function, returns boolean value whether the component should be kept or removed
TYPE: ComponentFilterPredicate
Iterator[PipelineComponent]
Iterator of components matching the predicate
Source code inkpops/pipeline.py
def find(self, predicate: ComponentFilterPredicate) -> Iterator[PipelineComponent]:\n \"\"\"Find pipeline components matching a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n :returns: Iterator of components matching the predicate\n \"\"\"\n for component in self.components:\n if predicate(component):\n yield component\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.get", "title": "get", "text": "get(component_id: str) -> PipelineComponent | None\n
Source code in kpops/pipeline.py
def get(self, component_id: str) -> PipelineComponent | None:\n return self._component_index.get(component_id)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.remove", "title": "remove", "text": "remove(component_id: str) -> None\n
Source code in kpops/pipeline.py
def remove(self, component_id: str) -> None:\n self._component_index.pop(component_id)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.to_yaml", "title": "to_yaml", "text": "to_yaml() -> str\n
Source code in kpops/pipeline.py
def to_yaml(self) -> str:\n return yaml.dump(\n self.model_dump(mode=\"json\", by_alias=True, exclude_none=True)[\"components\"]\n )\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.validate", "title": "validate", "text": "validate() -> None\n
Source code in kpops/pipeline.py
def validate(self) -> None: # pyright: ignore [reportIncompatibleMethodOverride]\n self.__validate_graph()\n
"}, {"location": "developer/auto-generation/", "title": "Auto generation", "text": "Auto generation happens mostly with pre-commit
hooks. You can find the pre-commit configuration here. These pre-commit hooks call different Python scripts to auto generate code for the documentation.
cli_env_vars.env
-- All CLI environment variables in a dotenv
file.cli_env_vars.md
-- All CLI environment variables in a table.config_env_vars.env
-- Almost all pipeline config environment variables in a dotenv
file. The script checks for each field in KpopsConfig
whether it has an env
attribute defined. The script is currently unable to visit the classes of fields like topic_name_config
, hence any environment variables defined there would remain unknown to it.config_env_vars.env
-- Almost all pipeline config environment variables in a table.variable_substitution.yaml
-- A copy of ./tests/pipeline/resources/component-type-substitution/pipeline.yaml
used as an example of substitution.Generated by typer-cli
from the code in main.py
. It is called with Python's subprocess
module.
Generates example pipeline.yaml
and defaults.yaml
for each individual component, stores them and also concatenates them into 1 big pipeline definition and 1 big pipeline defaults definition.
User input
headers/*\\.yaml
-- The top of each example. Includes a description comment, type
and name
. The headers for pipeline.yaml
reside in the pipeline-components
dir and the defaults.yaml
headers reside in the pipeline-defaults
dir. The names of the files must be equal to the respective component type
.sections/*\\.yaml
-- Each YAML file contains a single section (component attribute) definition. The intention is to keep the minimal set of definitions there from which any component definition can be built. The names of the files must be equal to the respective component type
and the attribute name. The sections are used for both defaults.yaml
and pipeline.yaml
generation and reside in the pipeline-components
dir.Generated
pipeline-components/dependencies/*
Cached information about KPOps componentspipeline_component_dependencies.yaml
-- Specifies per component which files in the sections
dir should be used for the pipeline.yaml
generation.defaults_pipeline_component_dependencies.yaml
-- Specifies per component which files in the sections
dir should be used for the defaults.yaml
generation.kpops_structure.yaml
-- Specifies the inheritance hierarchy of the components and what sections exist in each component.pipeline-components/*\\.yaml
-- All single-component pipeline definitions and one big (complete) pipeline.yaml
that contains all of them.pipeline-defaults/*\\.yaml
-- All single-component defaults definitions and one big (complete) defaults.yaml
that contains all of them.Welcome! We are glad to have you visit our contributing guide!
If you find any bugs or have suggestions for improvements, please open an issue and optionally a pull request (PR). In the case of a PR, we would appreciate it if you preface it with an issue outlining your goal and means of achieving it.
"}, {"location": "developer/contributing/#git", "title": "git", "text": "We are using git submodules to import the KPOps examples repository. You need to fetch the repository locally on your machine. To do so use this command:
git submodule init\ngit submodule update --recursive\n
This will fetch the resources under the examples
folder.
We advise that you stick to our pre-commit
hooks for code linting, formatting, and auto-generation of documentation. After you install them using poetry run pre-commit install
they're triggered automatically during git commit
. Additionally, you can manually invoke them with poetry run pre-commit run -a
. In order for dprint
to work, you have to manually install it locally. It will work in the CI, so it is also possible to manually carry out formatting changes flagged by dprint
in the CI and skip installing it locally.
To ensure a consistent Python code style, we use Ruff for both linting and formatting. The official docs contain a guide on editor integration.
Our configuration can be found in KPOps' top-level pyproject.toml
.
To ensure a consistent markdown style, we use dprint's Markdown code formatter. Our configuration can be found here.
"}, {"location": "developer/contributing/#css", "title": "CSS", "text": "To ensure a consistent CSS style, we use the malva dprint's plugin. Our configuration can be found here.
"}, {"location": "developer/contributing/#toml", "title": "TOML", "text": "To ensure a consistent TOML style, we use dprint's TOML code formatter. Our configuration can be found here.
"}, {"location": "developer/getting-started/", "title": "Getting started", "text": "Welcome! We are glad to have you visit our developer guide! If you find any bugs or have suggestions for improvements, please open an issue and optionally a pull request (PR). In the case of a PR, we would appreciate it if you preface it with an issue outlining your goal and means of achieving it.
Find more about our code-style or insights into KPOps' code base here in our developer guide.
Work in progress
The developer guide is still under construction. If you have a question left unanswered here, feel free to ask it by opening an issue.
"}, {"location": "user/changelog/", "title": "Changelog", "text": ""}, {"location": "user/changelog/#601-release-date-2024-06-12", "title": "6.0.1 - Release Date: [2024-06-12]", "text": ""}, {"location": "user/changelog/#fixes", "title": "\ud83d\udc1b Fixes", "text": "6.0.0
- #4966.0.0
- #4966.0.0
- #496Update Ruff - #475
Set Pyright to warn on unknown types - #480
Quiet faker debug logs in tests - #483
Add pyright matcher - #481
from.components.<component-name>.type
to input - #473Add support for Python 3.12 - #467
Update Pyright - #468
Remove package classifiers that are automatically assigned by Poetry - #469
Validate autoscaling mandatory fields when enabled - #470
Fix docs CI to include the latest changes to a tagged version in the changelog - #459
Fix tempfile creation - #461
Fix symbolic link to CONTRIBUTING.md and parallel option in action.yaml - #462
Refactor Kafka topics - #447
Refactor PipelineGenerator to use component ids - #460
Fix order of pipeline steps for clean/reset - #450
Fix substitution - #449
Fix cleaner inheritance, parent model should be aliased during instantiation - #452
Refactor enrichment using Pydantic model validator - #444
Refactor pipeline filter and add to public API - #405
Add custom PascalCase to snake_case alias generator - #436
Add parallel flag support to kpops runner - #439
Add message if examples git submodule is not initialized - #432
Update type annotation for deserialized pipeline - #433
Fix broken doc link - #427
Add warning log if SR handler is disabled but URL is set - #428
Update docs of word-count example for v3 & new folder structure - #423
Move ATM fraud to examples repo - #425
Fix broken doc link - #427
Update pydantic dependency - #422
Add git submodule instructions to the contributing.md - #429
Move GitHub action to repository root - #356
Make Kafka REST Proxy & Kafka Connect hosts default and improve Schema Registry config - #354
Create HelmApp component - #370
Change substitution variables separator to .
- #388
Refactor pipeline generator & representation - #392
Define custom components module & pipeline base dir globally - #387
Use hash and trim long Helm release names instead of only trimming - #390
Refactor generate template for Python API usage - #380
Namespace substitution vars - #408
Refactor streams-bootstrap cleanup jobs as individual HelmApp - #398
Refactor Kafka Connector resetter as individual HelmApp - #400
Fix wrong Helm release name character limit - #418
Allow overriding config files - #391
Generate defaults schema - #402
Fix missing component type in pipeline schema - #401
Fix enrichment of nested Pydantic BaseModel - #415
Fix wrong Helm release name character limit - #418
Update release workflow template to support custom changelog file path - #421
Make Kafka REST Proxy & Kafka Connect hosts default and improve Schema Registry config - #354
Migrate to Pydantic v2 - #347
Refactor pipeline generator & representation - #392
Use hash and trim long Helm release names instead of only trimming - #390
Refactor Helm nameOverride
- #397
Mark component type as computed Pydantic field - #399
Refactor generate template for Python API usage - #380
Support multiple inheritance for doc generation - #406
Refactor streams-bootstrap cleanup jobs as individual HelmApp - #398
Refactor Kafka Connector resetter as individual HelmApp - #400
Move GitHub action to repository root - #356
Create HelmApp component - #370
Update docs for substitution variable usage in v3 - #409
Support multiple inheritance for doc generation - #406
Update docs for v3 - #416
Update tests resources - #417
Summarize all breaking changes in diffs at the top of the migration guide - #419
Replace black with ruff - #365
Add toml formatter to dprint - #386
Add malva to dprint - #385
Update KPOps runner with the new options - #395
Fix KPOps action to get package from testPyPI - #396
KPOps 3.0 - #420
Fix early exit upon Helm exit code 1 - #376
Fix docs setup page list indentation - #377
Migrate deprecated mkdocs-material-extensions - #378
Fix docs setup page list indentation - #377
Exclude resources from docs search - #371
Fix environment variables documentation generation - #362
Introduce ruff - #363
Print details on connector name mismatch error - #369
Enable transparent OS environment lookups from internal environment - #368
Refactor component prefix & name - #326
Remove unnecessary condition during inflate - #328
--template
flag is set - #350Add dprint
as the markdown formatter - #337
Publish pre-release docs for PRs & main branch - #339
Align docs colours - #345
Add version dropdown to the documentation - #336
Break the documentation down into smaller subsection - #329
Remove camel case conversion of internal models - #308
Derive component type automatically from class name - #309
Refactor input/output types - #232
v2 - #321
Automatically support schema generation for custom components - #307
Derive component type automatically from class name - #309
Add KPOps Runner GitHub Action to the documentation - #325
Remove :type
and :rtype
from docstrings - #324
Modularize and autogenerate examples for the documentation - #267
Update the variable documentation - #266
--set-file
flag - #311Refactor Helm wrapper and add --set-file
flag - #311
Set default for ToSection topics - #313
Annotate types for ToSection models mapping - #315
Order PipelineComponent fields - #290
Migrate requests to httpx - #302
Refactor CLI using dtyper - #306
Update Black - #294
Fix vulnerability in mkdocs-material - #295
Move breaking changes section upper in the change log config - #287
Update codeowners - #281
Reactivate Windows CI - #255
Downgrade Poetry version on the Windows CI pipeline - #286
Set ANSI theme for output of kpops generate
- #289
Create workflow to lint CI - #260
Fix update docs when releasing - #261
Rename change log message for uncategorized issues - #262
helm repo update <repo-name>
for Helm >3.7 - #239add --namespace option to Helm template command - #237
Add missing type annotation for Pydantic attributes - #238
Fix helm version check - #242
Fix Helm Version Check - #244
Fix import from external module - #256
Remove enable option from helm diff - #235
Refactor variable substitution - #198
Add background to docs home page - #236
Update Poetry version in CI - #247
Add pip cache in KPOps runner action - #249
Check types using Pyright - #251
Remove MyPy - #252
Disable broken Windows CI temporarily - #253
Update release and publish workflows - #254
Fix release & publish workflows - #257
With a couple of easy commands in the shell, and a pipeline.yaml
of under 30 lines, KPOps can not only deploy
a Kafka pipeline1 to a Kubernetes cluster, but also reset
, clean
or destroy
it!
- type: producer-app\n name: data-producer\n app:\n image: bakdata/kpops-demo-sentence-producer\n\n- type: streams-app\n name: word-counter\n to:\n topics:\n ${output_topic_name}:\n type: output\n configs:\n cleanup.policy: compact\n app:\n image: bakdata/kpops-demo-word-count-app\n replicaCount: 1\n\n- type: kafka-sink-connector\n name: redis-sink-connector\n app:\n connector.class: com.github.jcustenborder.kafka.connect.redis.RedisSinkConnector\n redis.hosts: redis-headless:6379\n redis.database: 0\n tasks.max: 1\n key.converter: org.apache.kafka.connect.storage.StringConverter\n value.converter: org.apache.kafka.connect.storage.StringConverter\n
A Kafka pipeline can consist of consecutive streaming applications, producers, and connectors.\u00a0\u21a9
KPOps reads its global configuration that is unrelated to a pipeline's components from config.yaml
.
Consider enabling KPOps' editor integration feature to enjoy the benefits of autocompletion and validation when configuring your pipeline.
To learn about any of the available settings, take a look at the example below.
config.yaml
# CONFIGURATION\n#\n# Custom Python module defining project-specific KPOps components\ncomponents_module: null\n# Base directory to the pipelines (default is current working directory)\npipeline_base_dir: .\n# The Kafka brokers address.\n# REQUIRED\nkafka_brokers: \"http://broker1:9092,http://broker2:9092\"\n# Configure the topic name variables you can use in the pipeline definition.\ntopic_name_config: \n # Configures the value for the variable ${output_topic_name}\n default_output_topic_name: ${pipeline.name}-${component.name}\n # Configures the value for the variable ${error_topic_name}\n default_error_topic_name: ${pipeline.name}-${component.name}-error\n# Configuration for Schema Registry.\nschema_registry:\n # Whether the Schema Registry handler should be initialized.\n enabled: false\n # Address of the Schema Registry.\n url: \"http://localhost:8081\"\n# Configuration for the Kafka REST Proxy.\nkafka_rest:\n # Address of the Kafka REST Proxy.\n url: \"http://localhost:8082\"\n# Configuration for Kafka Connect.\nkafka_connect:\n # Address of Kafka Connect.\n url: \"http://localhost:8083\"\n# The timeout in seconds that specifies when actions like deletion or deploy\n# timeout.\ntimeout: 300\n# Flag for `helm upgrade --install`.\n# Create the release namespace if not present.\ncreate_namespace: false\n# Global flags for Helm.\nhelm_config:\n # Name of kubeconfig context (`--kube-context`)\n context: name\n # Run Helm in Debug mode.\n debug: false\n # Kubernetes API version used for Capabilities.APIVersions\n api_version: null\n# Configure Helm Diff.\nhelm_diff_config: \n # Set of keys that should not be checked.\n ignore:\n - name\n - imageTag\n# Whether to retain clean up jobs in the cluster or uninstall the, after\n# completion.\nretain_clean_jobs: false\n
Environment-specific pipeline definitions
Similarly to defaults, it is possible to have an unlimited amount of additional environment-specific pipeline definitions. The naming convention is the same: add a suffix of the form _{environment}
to the filename.
KPOps has a very efficient way of dealing with repeating settings which manifests as defaults.yaml
. This file provides the user with the power to set defaults for any and all components, thus omitting the need to repeat the same settings in pipeline.yaml
.
See real-world examples for defaults
.
An important mechanic of KPOps is that defaults
set for a component apply to all components that inherit from it.
It is possible, although not recommended, to add settings that are specific to a component's subclass. An example would be configuring offset_topic
under kafka-connector
instead of kafka-source-connector
.
KPOps allows using multiple default values. The defaults.yaml
(or defaults_<env>.yaml
) files can be distributed across multiple files. These will be picked up by KPOps and get merged into a single pipeline.yaml
file. KPOps starts from reading the default files from where the pipeline path is defined and picks up every defaults file on its way to where the pipeline_base_dir
is defined.
The deepest defaults.yaml
file in the folder hierarchy (i.e., the closest one to the pipeline.yaml
) overwrites the higher-level defaults' values.
It is important to note that defaults_{environment}.yaml
overrides only the settings that are explicitly set to be different from the ones in the base defaults
file.
Imagine the following folder structure, where the pipeline_base_dir
is configured to pipelines
:
\u2514\u2500 pipelines\n \u2514\u2500\u2500 distributed-defaults\n \u251c\u2500\u2500 defaults.yaml\n \u251c\u2500\u2500 defaults_dev.yaml\n \u2514\u2500\u2500 pipeline-deep\n \u251c\u2500\u2500 defaults.yaml\n \u2514\u2500\u2500 pipeline.yaml\n
KPOps picks up the defaults in the following order (high to low priority):
./pipelines/distributed-defaults/pipeline-deep/defaults.yaml
./pipelines/distributed-defaults/defaults_dev.yaml
./pipelines/distributed-defaults/defaults.yaml
The defaults
codeblocks in this section contain the full set of settings that are specific to the component. If a setting already exists in a parent config, it will not be included in the child's.
defaults.yaml
# Base Kubernetes App\n#\n# Parent of: HelmApp\n# Child of: PipelineComponent\nkubernetes-app:\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example.\n app: # required\n image: exampleImage # Example\n debug: false # Example\n commandLine: {} # Example\n
"}, {"location": "user/core-concepts/defaults/#kafkaapp", "title": "KafkaApp", "text": "defaults.yaml
# Base component for Kafka-based components.\n#\n# Parent of: ProducerApp, StreamsApp\n# Child of: KubernetesApp\nkafka-app:\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` can contain application-specific settings, hence the user is free to\n # add the key-value pairs they need.\n app: # required\n streams: # required\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n nameOverride: override-with-this-name # kafka-app-specific\n imageTag: \"1.0.0\" # Example values that are shared between streams-app and producer-app\n
"}, {"location": "user/core-concepts/defaults/#streamsapp", "title": "StreamsApp", "text": "defaults.yaml
# StreamsApp component that configures a streams bootstrap app.\n#\n# Child of: KafkaApp\n# More documentation on StreamsApp: https://github.com/bakdata/streams-bootstrap\nstreams-app:\n # No arbitrary keys are allowed under `app`here\n # Allowed configs:\n # https://github.com/bakdata/streams-bootstrap/tree/master/charts/streams-app\n app: # required\n # Streams Bootstrap streams section\n streams: # required, streams-app-specific\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n inputTopics:\n - topic1\n - topic2\n outputTopic: output-topic\n inputPattern: input-pattern\n extraInputTopics:\n input_role1:\n - input_topic1\n - input_topic2\n input_role2:\n - input_topic3\n - input_topic4\n extraInputPatterns:\n pattern_role1: input_pattern1\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n errorTopic: error-topic\n config:\n my.streams.config: my.value\n nameOverride: override-with-this-name # streams-app-specific\n autoscaling: # streams-app-specific\n consumerGroup: consumer-group # required\n lagThreshold: 0 # Average target value to trigger scaling actions.\n enabled: false # Whether to enable auto-scaling using KEDA.\n # This is the interval to check each trigger on.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#pollinginterval\n pollingInterval: 30\n # The period to wait after the last trigger reported active before scaling\n # the resource back to 0. https://keda.sh/docs/2.9/concepts/scaling-deployments/#cooldownperiod\n cooldownPeriod: 300\n # The offset reset policy for the consumer if the the consumer group is\n # not yet subscribed to a partition.\n offsetResetPolicy: earliest\n # This setting is passed to the HPA definition that KEDA will create for a\n # given resource and holds the maximum number of replicas of the target resouce.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#maxreplicacount\n maxReplicas: 1\n # Minimum number of replicas KEDA will scale the resource down to.\n # https://keda.sh/docs/2.7/concepts/scaling-deployments/#minreplicacount\n minReplicas: 0\n # If this property is set, KEDA will scale the resource down to this\n # number of replicas.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#idlereplicacount\n idleReplicas: 0\n topics: # List of auto-generated Kafka Streams topics used by the streams app.\n - topic1\n - topic2\n
"}, {"location": "user/core-concepts/defaults/#producerapp", "title": "ProducerApp", "text": "defaults.yaml
\n
"}, {"location": "user/core-concepts/defaults/#kafkaconnector", "title": "KafkaConnector", "text": "defaults.yaml
# Kafka connector\n#\n# Parent of: KafkaSinkConnector, KafkaSourceConnector\n# Child of: PipelineComponent\nkafka-connector:\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example. Extensive documentation on\n # connectors: https://kafka.apache.org/documentation/#connectconfigs\n app: # required\n tasks.max: 1\n # Overriding Kafka Connect Resetter Helm values. E.g. to override the\n # Image Tag etc.\n resetter_values:\n imageTag: \"1.2.3\"\n
"}, {"location": "user/core-concepts/defaults/#kafkasourceconnector", "title": "KafkaSourceConnector", "text": "defaults.yaml
# Kafka source connector\n#\n# Child of: KafkaConnector\nkafka-source-connector:\n # The source connector has no `from` section\n # from:\n # offset.storage.topic\n # https://kafka.apache.org/documentation/#connect_running\n offset_topic: offset_topic\n
"}, {"location": "user/core-concepts/defaults/#kafkasinkconnector", "title": "KafkaSinkConnector", "text": "defaults.yaml
# Kafka sink connector\n#\n# Child of: KafkaConnector\nkafka-sink-connector:\n # No settings differ from `kafka-connector`\n
"}, {"location": "user/core-concepts/components/helm-app/", "title": "HelmApp", "text": ""}, {"location": "user/core-concepts/components/helm-app/#usage", "title": "Usage", "text": "Can be used to deploy any app in Kubernetes using Helm, for example, a REST service that serves Kafka data.
"}, {"location": "user/core-concepts/components/helm-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Kubernetes app managed through Helm with an associated Helm chart\n- type: helm-app\n name: helm-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example.\n app: # required\n image: exampleImage # Example\n debug: false # Example\n commandLine: {} # Example\n # Helm repository configuration (optional)\n # If not set the helm repo add will not be called. Useful when using local Helm charts\n repo_config:\n repository_name: bakdata-streams-bootstrap # required\n url: https://bakdata.github.io/streams-bootstrap/ # required\n repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"1.0.0\" # Helm chart version\n
"}, {"location": "user/core-concepts/components/helm-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/helm-app/#deploy", "title": "deploy", "text": "Deploy using Helm.
"}, {"location": "user/core-concepts/components/helm-app/#destroy", "title": "destroy", "text": "Uninstall Helm release.
"}, {"location": "user/core-concepts/components/helm-app/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/helm-app/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kafka-app/", "title": "KafkaApp", "text": "Subclass of HelmApp.
"}, {"location": "user/core-concepts/components/kafka-app/#usage", "title": "Usage", "text": "pipeline.yaml
as the component can be defined as either a StreamsApp or a ProducerAppdefaults.yaml
pipeline.yaml
# Base component for Kafka-based components.\n# Producer or streaming apps should inherit from this class.\n- type: kafka-app # required\n name: kafka-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` can contain application-specific settings, hence the user is free to\n # add the key-value pairs they need.\n app: # required\n streams: # required\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n nameOverride: override-with-this-name # kafka-app-specific\n imageTag: \"1.0.0\" # Example values that are shared between streams-app and producer-app\n
"}, {"location": "user/core-concepts/components/kafka-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kafka-app/#deploy", "title": "deploy", "text": "In addition to HelmApp's deploy
:
Uninstall Helm release.
"}, {"location": "user/core-concepts/components/kafka-app/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kafka-app/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kafka-connector/", "title": "KafkaConnector", "text": "KafkaConnector
is a component that deploys Kafka Connectors. Since a connector cannot be different from sink or source it is not recommended to use KafkaConnector
for deployment in pipeline.yaml
. Instead, KafkaConnector
should be used in defaults.yaml
to set defaults for all connectors in the pipeline as they can share some common settings.
Subclass of KafkaConnector.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#usage", "title": "Usage", "text": "Lets other systems pull data from Apache Kafka.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Kafka sink connector\n- type: kafka-sink-connector\n name: kafka-sink-connector # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example. Extensive documentation on\n # connectors: https://kafka.apache.org/documentation/#connectconfigs\n app: # required\n tasks.max: 1\n # Overriding Kafka Connect Resetter Helm values. E.g. to override the\n # Image Tag etc.\n resetter_values:\n imageTag: \"1.2.3\"\n
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kafka-sink-connector/#deploy", "title": "deploy", "text": "The associated sink connector is removed from the Kafka Connect cluster.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#reset", "title": "reset", "text": "Reset the consumer group offsets using bakdata's sink resetter.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#clean", "title": "clean", "text": "Subclass of KafkaConnector.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#usage", "title": "Usage", "text": "Manages source connectors in your Kafka Connect cluster.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Kafka source connector\n- type: kafka-source-connector # required\n name: kafka-source-connector # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n # The source connector has no `from` section\n # from:\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example. Extensive documentation on\n # connectors: https://kafka.apache.org/documentation/#connectconfigs\n app: # required\n tasks.max: 1\n # Overriding Kafka Connect Resetter Helm values. E.g. to override the\n # Image Tag etc.\n resetter_values:\n imageTag: \"1.2.3\"\n # offset.storage.topic\n # https://kafka.apache.org/documentation/#connect_running\n offset_topic: offset_topic\n
"}, {"location": "user/core-concepts/components/kafka-source-connector/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kafka-source-connector/#deploy", "title": "deploy", "text": "Remove the source connector from the Kafka Connect cluster.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#reset", "title": "reset", "text": "Delete state associated with the connector using bakdata's sink resetter.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#clean", "title": "clean", "text": "Can be used to create components for any Kubernetes app.
"}, {"location": "user/core-concepts/components/kubernetes-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Base Kubernetes App\n- type: kubernetes-app\n name: kubernetes-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example.\n app: # required\n image: exampleImage # Example\n debug: false # Example\n commandLine: {} # Example\n
"}, {"location": "user/core-concepts/components/kubernetes-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kubernetes-app/#deploy", "title": "deploy", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kubernetes-app/#destroy", "title": "destroy", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kubernetes-app/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kubernetes-app/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/overview/", "title": "Overview", "text": "This section explains the different components of KPOps, their usage and configuration in the pipeline definition pipeline.yaml
.
flowchart BT\n KubernetesApp --> PipelineComponent\n KafkaApp --> PipelineComponent\n HelmApp --> KubernetesApp\n StreamsBootstrap --> HelmApp\n StreamsApp --> KafkaApp\n StreamsApp --> StreamsBootstrap\n ProducerApp --> KafkaApp\n ProducerApp --> StreamsBootstrap\n KafkaConnector --> PipelineComponent\n KafkaSourceConnector --> KafkaConnector\n KafkaSinkConnector --> KafkaConnector\n\n click KubernetesApp \"./../kubernetes-app\"\n click HelmApp \"./../helm-app\"\n click KafkaApp \"./../kafka-app\"\n click StreamsBootstrap \"./../streams-bootstrap\"\n click StreamsApp \"./../streams-app\"\n click ProducerApp \"./../producer-app\"\n click KafkaConnector \"./../kafka-connector\"\n click KafkaSourceConnector \"./../kafka-source-connector\"\n click KafkaSinkConnector \"./../kafka-sink-connector\"
KPOps component hierarchy
"}, {"location": "user/core-concepts/components/producer-app/", "title": "ProducerApp", "text": "Subclass of KafkaApp and StreamsBootstrap.
"}, {"location": "user/core-concepts/components/producer-app/#usage", "title": "Usage", "text": "Configures a streams-bootstrap Kafka producer app
"}, {"location": "user/core-concepts/components/producer-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Holds configuration to use as values for the streams bootstrap producer-app Helm\n# chart.\n# More documentation on ProducerApp:\n# https://github.com/bakdata/streams-bootstrap\n- type: producer-app\n name: producer-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n # from: # While the producer-app does inherit from kafka-app, it does not need a\n # `from` section, hence it does not support it.\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # Allowed configs:\n # https://github.com/bakdata/streams-bootstrap/tree/master/charts/producer-app\n app: # required\n streams: # required, producer-app-specific\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n outputTopic: output_topic\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n nameOverride: override-with-this-name # kafka-app-specific\n # Helm repository configuration (optional)\n # If not set the helm repo add will not be called. Useful when using local Helm charts\n repo_config:\n repository_name: bakdata-streams-bootstrap # required\n url: https://bakdata.github.io/streams-bootstrap/ # required\n repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"2.12.0\" # Helm chart version\n
"}, {"location": "user/core-concepts/components/producer-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/producer-app/#deploy", "title": "deploy", "text": "In addition to KubernetesApp's deploy
:
Uninstall Helm release.
"}, {"location": "user/core-concepts/components/producer-app/#reset", "title": "reset", "text": "Do nothing, producers are stateless.
"}, {"location": "user/core-concepts/components/producer-app/#clean", "title": "clean", "text": "Subclass of KafkaApp and StreamsBootstrap.
"}, {"location": "user/core-concepts/components/streams-app/#usage", "title": "Usage", "text": "Configures a streams-bootstrap Kafka Streams app
"}, {"location": "user/core-concepts/components/streams-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# StreamsApp component that configures a streams bootstrap app.\n# More documentation on StreamsApp: https://github.com/bakdata/streams-bootstrap\n- type: streams-app # required\n name: streams-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # No arbitrary keys are allowed under `app`here\n # Allowed configs:\n # https://github.com/bakdata/streams-bootstrap/tree/master/charts/streams-app\n app: # required\n # Streams Bootstrap streams section\n streams: # required, streams-app-specific\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n inputTopics:\n - topic1\n - topic2\n outputTopic: output-topic\n inputPattern: input-pattern\n extraInputTopics:\n input_role1:\n - input_topic1\n - input_topic2\n input_role2:\n - input_topic3\n - input_topic4\n extraInputPatterns:\n pattern_role1: input_pattern1\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n errorTopic: error-topic\n config:\n my.streams.config: my.value\n nameOverride: override-with-this-name # streams-app-specific\n autoscaling: # streams-app-specific\n consumerGroup: consumer-group # required\n lagThreshold: 0 # Average target value to trigger scaling actions.\n enabled: false # Whether to enable auto-scaling using KEDA.\n # This is the interval to check each trigger on.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#pollinginterval\n pollingInterval: 30\n # The period to wait after the last trigger reported active before scaling\n # the resource back to 0. https://keda.sh/docs/2.9/concepts/scaling-deployments/#cooldownperiod\n cooldownPeriod: 300\n # The offset reset policy for the consumer if the the consumer group is\n # not yet subscribed to a partition.\n offsetResetPolicy: earliest\n # This setting is passed to the HPA definition that KEDA will create for a\n # given resource and holds the maximum number of replicas of the target resouce.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#maxreplicacount\n maxReplicas: 1\n # Minimum number of replicas KEDA will scale the resource down to.\n # https://keda.sh/docs/2.7/concepts/scaling-deployments/#minreplicacount\n minReplicas: 0\n # If this property is set, KEDA will scale the resource down to this\n # number of replicas.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#idlereplicacount\n idleReplicas: 0\n topics: # List of auto-generated Kafka Streams topics used by the streams app.\n - topic1\n - topic2\n # Helm repository configuration (optional)\n # If not set the helm repo add will not be called. Useful when using local Helm charts\n repo_config:\n repository_name: bakdata-streams-bootstrap # required\n url: https://bakdata.github.io/streams-bootstrap/ # required\n repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"2.12.0\" # Helm chart version\n
"}, {"location": "user/core-concepts/components/streams-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/streams-app/#deploy", "title": "deploy", "text": "In addition to KubernetesApp's deploy
:
Uninstall Helm release.
"}, {"location": "user/core-concepts/components/streams-app/#reset", "title": "reset", "text": "Similar to reset
with to additional steps:
Subclass of HelmApp.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#usage", "title": "Usage", "text": "Configures a Helm app with streams-bootstrap Helm charts.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/streams-bootstrap/#deploy", "title": "deploy", "text": "Deploy using Helm.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#destroy", "title": "destroy", "text": "Uninstall Helm release.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/variables/environment_variables/", "title": "Environment variables", "text": "Environment variables can be set by using the export command in Linux or the set command in Windows.
dotenv files
KPOps currently supports .env
files only for variables related to the config. Full support for .env
files is on the roadmap. One of the possible ways to use one and export the contents manually is with the following command: export $(xargs < .env)
. This would work in bash
suppose there are no spaces inside the values.
These variables take precedence over the settings in config.yaml
. Variables marked as required can instead be set in the global config.
helm upgrade --install
. Create the release namespace if not present. create_namespace KPOPS_HELM_CONFIG__CONTEXT False Name of kubeconfig context (--kube-context
) helm_config.context KPOPS_HELM_CONFIG__DEBUG False False Run Helm in Debug mode helm_config.debug KPOPS_HELM_CONFIG__API_VERSION False Kubernetes API version used for Capabilities.APIVersions
helm_config.api_version KPOPS_HELM_DIFF_CONFIG__IGNORE True Set of keys that should not be checked. helm_diff_config.ignore KPOPS_RETAIN_CLEAN_JOBS False False Whether to retain clean up jobs in the cluster or uninstall the, after completion. retain_clean_jobs config_env_vars.env Exhaustive list of all config-related environment variables# Global config environment variables\n#\n# The default setup is shown. These variables take precedence over the\n# settings in `config.yaml`. Variables marked as required can instead\n# be set in the global config.\n#\n# components_module\n# Custom Python module defining project-specific KPOps components\nKPOPS_COMPONENTS_MODULE # No default value, not required\n# pipeline_base_dir\n# Base directory to the pipelines (default is current working\n# directory)\nKPOPS_PIPELINE_BASE_DIR=.\n# kafka_brokers\n# The comma separated Kafka brokers address.\nKPOPS_KAFKA_BROKERS # No default value, required\n# topic_name_config.default_output_topic_name\n# Configures the value for the variable ${output_topic_name}\nKPOPS_TOPIC_NAME_CONFIG__DEFAULT_OUTPUT_TOPIC_NAME=${pipeline.name}-${component.name}\n# topic_name_config.default_error_topic_name\n# Configures the value for the variable ${error_topic_name}\nKPOPS_TOPIC_NAME_CONFIG__DEFAULT_ERROR_TOPIC_NAME=${pipeline.name}-${component.name}-error\n# schema_registry.enabled\n# Whether the Schema Registry handler should be initialized.\nKPOPS_SCHEMA_REGISTRY__ENABLED=False\n# schema_registry.url\n# Address of the Schema Registry.\nKPOPS_SCHEMA_REGISTRY__URL=http://localhost:8081/\n# schema_registry.timeout\n# Operation timeout in seconds.\nKPOPS_SCHEMA_REGISTRY__TIMEOUT=30\n# kafka_rest.url\n# Address of the Kafka REST Proxy.\nKPOPS_KAFKA_REST__URL=http://localhost:8082/\n# kafka_rest.timeout\n# Operation timeout in seconds.\nKPOPS_KAFKA_REST__TIMEOUT=30\n# kafka_connect.url\n# Address of Kafka Connect.\nKPOPS_KAFKA_CONNECT__URL=http://localhost:8083/\n# kafka_connect.timeout\n# Operation timeout in seconds.\nKPOPS_KAFKA_CONNECT__TIMEOUT=30\n# create_namespace\n# Flag for `helm upgrade --install`. Create the release namespace if\n# not present.\nKPOPS_CREATE_NAMESPACE=False\n# helm_config.context\n# Name of kubeconfig context (`--kube-context`)\nKPOPS_HELM_CONFIG__CONTEXT # No default value, not required\n# helm_config.debug\n# Run Helm in Debug mode\nKPOPS_HELM_CONFIG__DEBUG=False\n# helm_config.api_version\n# Kubernetes API version used for `Capabilities.APIVersions`\nKPOPS_HELM_CONFIG__API_VERSION # No default value, not required\n# helm_diff_config.ignore\n# Set of keys that should not be checked.\nKPOPS_HELM_DIFF_CONFIG__IGNORE # No default value, required\n# retain_clean_jobs\n# Whether to retain clean up jobs in the cluster or uninstall the,\n# after completion.\nKPOPS_RETAIN_CLEAN_JOBS=False\n
"}, {"location": "user/core-concepts/variables/environment_variables/#cli", "title": "CLI", "text": "These variables take precedence over the commands' flags. If a variable is set, the corresponding flag does not have to be specified in commands. Variables marked as required can instead be set as flags.
Name Default Value Required Description KPOPS_CONFIG_PATH . False Path to the dir containing config.yaml files KPOPS_DOTENV_PATH False Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. KPOPS_ENVIRONMENT False The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). KPOPS_PIPELINE_PATHS True Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. KPOPS_PIPELINE_STEPS False Comma separated list of steps to apply the command on cli_env_vars.env Exhaustive list of all cli-related environment variables# CLI Environment variables\n#\n# The default setup is shown. These variables take precedence over the\n# commands' flags. If a variable is set, the corresponding flag does\n# not have to be specified in commands. Variables marked as required\n# can instead be set as flags.\n#\n# Path to the dir containing config.yaml files\nKPOPS_CONFIG_PATH=.\n# Path to dotenv file. Multiple files can be provided. The files will\n# be loaded in order, with each file overriding the previous one.\nKPOPS_DOTENV_PATH # No default value, not required\n# The environment you want to generate and deploy the pipeline to.\n# Suffix your environment files with this value (e.g.\n# defaults_development.yaml for environment=development).\nKPOPS_ENVIRONMENT # No default value, not required\n# Paths to dir containing 'pipeline.yaml' or files named\n# 'pipeline.yaml'.\nKPOPS_PIPELINE_PATHS # No default value, required\n# Comma separated list of steps to apply the command on\nKPOPS_PIPELINE_STEPS # No default value, not required\n
"}, {"location": "user/core-concepts/variables/substitution/", "title": "Substitution", "text": "KPOps supports the usage of placeholders and environment variables in pipeline definition and defaults.
"}, {"location": "user/core-concepts/variables/substitution/#component-specific-variables", "title": "Component-specific variables", "text": "These variables can be used in a component's definition to refer to any of its attributes, including ones that the user has defined in the defaults.
All of them are prefixed with component.
and follow the following form: component.{attribute_name}
. If the attribute itself contains attributes, they can be referred to like this: component.{attribute_name}.{subattribute_name}
.
- type: scheduled-producer\n app:\n labels:\n app_type: \"${component.type}\"\n app_name: \"${component.name}\"\n app_schedule: \"${component.app.schedule}\"\n commandLine:\n FAKE_ARG: \"fake-arg-value\"\n schedule: \"30 3/8 * * *\"\n- type: converter\n app:\n commandLine:\n CONVERT_XML: true\n resources:\n limits:\n memory: 2G\n requests:\n memory: 2G\n- type: filter\n name: \"filter-app\"\n app:\n labels:\n app_type: \"${component.type}\"\n app_name: \"${component.name}\"\n app_resources_requests_memory: \"${component.app.resources.requests.memory}\"\n ${component.type}: \"${component.app.labels.app_name}-${component.app.labels.app_type}\"\n test_placeholder_in_placeholder: \"${component.app.labels.${component.type}}\"\n commandLine:\n TYPE: \"nothing\"\n resources:\n requests:\n memory: 3G\n replicaCount: 4\n autoscaling:\n minReplicas: 4\n maxReplicas: 4\n
"}, {"location": "user/core-concepts/variables/substitution/#pipeline-config-specific-variables", "title": "Pipeline-config-specific variables", "text": "These variables include all fields in the config and refer to the pipeline configuration that is independent of the components.
All such variables are prefixed with config.
and are of the same form as the component-specific variables.
Info
error_topic_name
is an alias for config.topic_name_config.default_error_topic_name
output_topic_name
is an alias for config.topic_name_config.default_output_topic_name
Environment variables such as $PATH
can be used in the pipeline definition and defaults without any transformation following the form ${ENV_VAR_NAME}
. This, of course, includes variables like the ones relevant to the KPOps cli that are exported by the user.
See all KPOps environment variables
"}, {"location": "user/core-concepts/variables/substitution/#pipeline-name-variables", "title": "Pipeline name variables", "text": "These are special variables that refer to the name and path of a pipeline.
${pipeline.name}
: Concatenated path of the parent directory where pipeline.yaml is defined in. For instance, ./data/pipelines/v1/pipeline.yaml
, here the value for the variable would be data-pipelines-v1
.
${pipeline_name_<level>}
: Similar to the previous variable, each <level>
contains a part of the path to the pipeline.yaml
file. Consider the previous example, ${pipeline_name_0}
would be data
, ${pipeline_name_1}
would be pipelines
, and ${pipeline_name_2}
equals to v1
.
ATM fraud is a demo pipeline for ATM fraud detection. The original by Confluent is written in KSQL and outlined in this blogpost. The one used in this example is re-built from scratch using bakdata's streams-bootstrap
library.
Completed all steps in the setup.
"}, {"location": "user/examples/atm-fraud-pipeline/#setup-and-deployment", "title": "Setup and deployment", "text": ""}, {"location": "user/examples/atm-fraud-pipeline/#postgresql", "title": "PostgreSQL", "text": "Deploy PostgreSQL using the Bitnami Helm chart: Add the helm repository:
helm repo add bitnami https://charts.bitnami.com/bitnami && \\\nhelm repo update\n
Install the PostgreSQL with helm:
helm upgrade --install -f ./postgresql.yaml \\\n--namespace kpops \\\npostgresql bitnami/postgresql\n
PostgreSQL Example Helm chart values (postgresql.yaml
) auth:\n database: app_db\n enablePostgresUser: true\n password: AppPassword\n postgresPassword: StrongPassword\n username: app1\nprimary:\n persistence:\n enabled: false\n existingClaim: postgresql-data-claim\nvolumePermissions:\n enabled: true\n
"}, {"location": "user/examples/atm-fraud-pipeline/#atm-fraud-detection-example-pipeline-setup", "title": "ATM fraud detection example pipeline setup", "text": ""}, {"location": "user/examples/atm-fraud-pipeline/#port-forwarding", "title": "Port forwarding", "text": "Before we deploy the pipeline, we need to forward the ports of kafka-rest-proxy
and kafka-connect
. Run the following commands in two different terminals.
kubectl port-forward --namespace kpops service/k8kafka-cp-rest 8082:8082\n
kubectl port-forward --namespace kpops service/k8kafka-cp-kafka-connect 8083:8083\n
"}, {"location": "user/examples/atm-fraud-pipeline/#deploying-the-atm-fraud-detection-pipeline", "title": "Deploying the ATM fraud detection pipeline", "text": "Clone the kpops-examples repository and cd
into the directory.
Install KPOps pip install -r requirements.txt
.
Export environment variables in your terminal:
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Deploy the pipeline
kpops deploy atm-fraud/pipeline.yaml --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be deployed correctly.
You can use the Streams Explorer to see the deployed pipeline. To do so, port-forward the service in a separate terminal session using the command below:
kubectl port-forward -n kpops service/streams-explorer 8080:8080\n
After that open http://localhost:8080 in your browser. You should be able to see pipeline shown in the image below:
An overview of ATM fraud pipeline shown in Streams Explorer
Attention
Kafka Connect needs some time to set up the connector. Moreover, Streams Explorer needs a while to scrape the information from Kafka connect. Therefore, it might take a bit until you see the whole graph.
"}, {"location": "user/examples/atm-fraud-pipeline/#teardown-resources", "title": "Teardown resources", "text": ""}, {"location": "user/examples/atm-fraud-pipeline/#postrgresql", "title": "PostrgreSQL", "text": "PostgreSQL can be uninstalled by running the following command:
helm --namespace kpops uninstall postgresql\n
"}, {"location": "user/examples/atm-fraud-pipeline/#atm-fraud-pipeline", "title": "ATM fraud pipeline", "text": "Export environment variables in your terminal.
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Remove the pipeline
kpops clean atm-fraud/pipeline.yaml --verbose --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be destroyed correctly.
Attention
If you face any issues destroying this example see Teardown for manual deletion.
"}, {"location": "user/examples/atm-fraud-pipeline/#common-errors", "title": "Common errors", "text": "deploy
fails:clean
.deploy --dry-run
to avoid havig to clean
again. If an error is dropped, start over from step 1.deploy
.clean
fails:clean
.clean
fails, follow the steps in teardown.Word-count is a demo pipeline consisting of a producer producing words to Kafka, a Kafka streams app counting the number of times each word occurs, and finally a Redis database into which the words are exported.
"}, {"location": "user/getting-started/quick-start/#what-this-will-demonstrate", "title": "What this will demonstrate", "text": "Completed all steps in the setup.
"}, {"location": "user/getting-started/quick-start/#setup-and-deployment", "title": "Setup and deployment", "text": ""}, {"location": "user/getting-started/quick-start/#redis", "title": "Redis", "text": "Deploy Redis using the Bitnami Helm chart: Add the Helm repository:
helm repo add bitnami https://charts.bitnami.com/bitnami && \\\nhelm repo update\n
Install Redis with Helm:
helm upgrade --install -f ./values-redis.yaml \\\n--namespace kpops \\\nredis bitnami/redis\n
Redis example Helm chart values (values-redis.yaml
) architecture: standalone\nauth:\n enabled: false\nmaster:\n count: 1\n configuration: \"databases 1\"\nimage:\n tag: 7.0.8\n
"}, {"location": "user/getting-started/quick-start/#word-count-example-pipeline-setup", "title": "Word-count example pipeline setup", "text": ""}, {"location": "user/getting-started/quick-start/#port-forwarding", "title": "Port forwarding", "text": "Before we deploy the pipeline, we need to forward the ports of kafka-rest-proxy
and kafka-connect
. Run the following commands in two different terminals.
kubectl port-forward --namespace kpops service/k8kafka-cp-rest 8082:8082\n
kubectl port-forward --namespace kpops service/k8kafka-cp-kafka-connect 8083:8083\n
"}, {"location": "user/getting-started/quick-start/#deploying-the-word-count-pipeline", "title": "Deploying the Word-count pipeline", "text": "Clone the kpops-examples repository and cd
into the directory.
Install KPOps pip install -r requirements.txt
.
Export environment variables in your terminal:
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Deploy the pipeline
kpops deploy word-count/pipeline.yaml --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be deployed correctly.
You can use the Streams Explorer to inspect the deployed pipeline. To do so, port-forward the service in a separate terminal session using the command below:
kubectl port-forward -n kpops service/streams-explorer 8080:8080\n
After that open http://localhost:8080 in your browser.
You should be able to see pipeline shown in the image below:
An overview of Word-count pipeline shown in Streams Explorer
Attention
Kafka Connect needs some time to set up the connector. Moreover, Streams Explorer needs a while to scrape the information from Kafka Connect. Therefore, it might take a bit until you see the whole graph.
"}, {"location": "user/getting-started/quick-start/#teardown-resources", "title": "Teardown resources", "text": ""}, {"location": "user/getting-started/quick-start/#redis_1", "title": "Redis", "text": "Redis can be uninstalled by running the following command:
helm --namespace kpops uninstall redis\n
"}, {"location": "user/getting-started/quick-start/#word-count-pipeline", "title": "Word-count pipeline", "text": "Export environment variables in your terminal.
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Remove the pipeline
kpops clean word-count/pipeline.yaml --verbose --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be destroyed correctly.
Attention
If you face any issues destroying this example see Teardown for manual deletion.
"}, {"location": "user/getting-started/quick-start/#common-errors", "title": "Common errors", "text": "deploy
fails:clean
.deploy --dry-run
to avoid having to clean
again. If an error is dropped, start over from step 1.deploy
.clean
fails:clean
.clean
fails, follow the steps in teardown.In this part, you will set up KPOps. This includes:
If you don't have access to an existing Kubernetes cluster, this section will guide you through creating a local cluster. We recommend the lightweight Kubernetes distribution k3s for this. k3d is a wrapper around k3s in Docker that lets you get started fast.
You can install k3d with its installation script:
wget -q -O - https://raw.githubusercontent.com/k3d-io/k3d/v5.4.6/install.sh | bash\n
For other ways of installing k3d, you can have a look at their installation guide.
The Kafka deployment needs a modified Docker image. In that case the image is built and pushed to a Docker registry that holds it. If you do not have access to an existing Docker registry, you can use k3d's Docker registry:
k3d registry create kpops-registry.localhost --port 12345\n
Now you can create a new cluster called kpops
that uses the previously created Docker registry:
k3d cluster create kpops --k3s-arg \"--no-deploy=traefik@server:*\" --registry-use k3d-kpops-registry.localhost:12345\n
Note
Creating a new k3d cluster automatically configures kubectl
to connect to the local cluster by modifying your ~/.kube/config
. In case you manually set the KUBECONFIG
variable or don't want k3d to modify your config, k3d offers many other options.
You can check the cluster status with kubectl get pods -n kube-system
. If all returned elements have a STATUS
of Running
or Completed
, then the cluster is up and running.
Kafka is an open-source data streaming platform. More information about Kafka can be found in the documentation. To deploy Kafka, this guide uses Confluent's Helm chart.
To allow connectivity to other systems Kafka Connect needs to be extended with drivers. You can install a JDBC driver for Kafka Connect by creating a new Docker image:
Create a Dockerfile
with the following content:
FROM confluentinc/cp-kafka-connect:7.1.3\n\nRUN confluent-hub install --no-prompt confluentinc/kafka-connect-jdbc:10.6.0\n
Build and push the modified image to your private Docker registry:
docker build . --tag localhost:12345/kafka-connect-jdbc:7.1.3 && \\\ndocker push localhost:12345/kafka-connect-jdbc:7.1.3\n
Detailed instructions on building, tagging and pushing a docker image can be found in Docker docs.
Add Confluent's Helm chart repository and update the index:
helm repo add confluentinc https://confluentinc.github.io/cp-helm-charts/ && \nhelm repo update\n
Install Kafka, Zookeeper, Confluent's Schema Registry, Kafka Rest Proxy, and Kafka Connect. A single Helm chart installs all five components. Below you can find an example for the --values ./kafka.yaml
file configuring the deployment accordingly. Deploy the services:
helm upgrade \\\n --install \\\n --version 0.6.1 \\\n --values ./kafka.yaml \\\n --namespace kpops \\\n --create-namespace \\\n --wait \\\n k8kafka confluentinc/cp-helm-charts\n
kafka.yaml
) An example value configuration for Confluent's Helm chart. This configuration deploys a single Kafka Broker, a Schema Registry, Zookeeper, Kafka Rest Proxy, and Kafka Connect with minimal resources.
cp-zookeeper:\n enabled: true\n servers: 1\n imageTag: 7.1.3\n heapOptions: \"-Xms124M -Xmx124M\"\n overrideGroupId: k8kafka\n fullnameOverride: \"k8kafka-cp-zookeeper\"\n resources:\n requests:\n cpu: 50m\n memory: 0.2G\n limits:\n cpu: 250m\n memory: 0.2G\n prometheus:\n jmx:\n enabled: false\n\ncp-kafka:\n enabled: true\n brokers: 1\n imageTag: 7.1.3\n podManagementPolicy: Parallel\n configurationOverrides:\n \"auto.create.topics.enable\": false\n \"offsets.topic.replication.factor\": 1\n \"transaction.state.log.replication.factor\": 1\n \"transaction.state.log.min.isr\": 1\n \"confluent.metrics.reporter.topic.replicas\": 1\n resources:\n requests:\n cpu: 50m\n memory: 0.5G\n limits:\n cpu: 250m\n memory: 0.5G\n prometheus:\n jmx:\n enabled: false\n persistence:\n enabled: false\n\ncp-schema-registry:\n enabled: true\n imageTag: 7.1.3\n fullnameOverride: \"k8kafka-cp-schema-registry\"\n overrideGroupId: k8kafka\n kafka:\n bootstrapServers: \"PLAINTEXT://k8kafka-cp-kafka-headless:9092\"\n resources:\n requests:\n cpu: 50m\n memory: 0.25G\n limits:\n cpu: 250m\n memory: 0.25G\n prometheus:\n jmx:\n enabled: false\n\ncp-kafka-connect:\n enabled: true\n replicaCount: 1\n image: k3d-kpops-registry.localhost:12345/kafka-connect-jdbc\n imageTag: 7.1.3\n fullnameOverride: \"k8kafka-cp-kafka-connect\"\n overrideGroupId: k8kafka\n kafka:\n bootstrapServers: \"PLAINTEXT://k8kafka-cp-kafka-headless:9092\"\n heapOptions: \"-Xms256M -Xmx256M\"\n resources:\n requests:\n cpu: 500m\n memory: 0.25G\n limits:\n cpu: 500m\n memory: 0.25G\n configurationOverrides:\n \"consumer.max.poll.records\": \"10\"\n \"consumer.max.poll.interval.ms\": \"900000\"\n \"config.storage.replication.factor\": \"1\"\n \"offset.storage.replication.factor\": \"1\"\n \"status.storage.replication.factor\": \"1\"\n cp-schema-registry:\n url: http://k8kafka-cp-schema-registry:8081\n prometheus:\n jmx:\n enabled: false\n\ncp-kafka-rest:\n enabled: true\n imageTag: 7.1.3\n fullnameOverride: \"k8kafka-cp-rest\"\n heapOptions: \"-Xms256M -Xmx256M\"\n resources:\n requests:\n cpu: 50m\n memory: 0.25G\n limits:\n cpu: 250m\n memory: 0.5G\n prometheus:\n jmx:\n enabled: false\n\ncp-ksql-server:\n enabled: false\ncp-control-center:\n enabled: false\n
"}, {"location": "user/getting-started/setup/#deploy-streams-explorer", "title": "Deploy Streams Explorer", "text": "Streams Explorer allows examining Apache Kafka data pipelines in a Kubernetes cluster including the inspection of schemas and monitoring of metrics. First, add the Helm repository:
helm repo add streams-explorer https://bakdata.github.io/streams-explorer && \\\nhelm repo update\n
Below you can find an example for the --values ./streams-explorer.yaml
file configuring the deployment accordingly. Now, deploy the service:
helm upgrade \\\n --install \\\n --version 0.2.3 \\\n --values ./streams-explorer.yaml \\\n --namespace kpops \\\n streams-explorer streams-explorer/streams-explorer\n
Streams Explorer Helm chart values (streams-explorer.yaml
) An example value configuration for Steams Explorer Helm chart.
imageTag: \"v2.1.2\"\nconfig:\n K8S__deployment__cluster: true\n SCHEMAREGISTRY__url: http://k8kafka-cp-schema-registry.kpops.svc.cluster.local:8081\n KAFKACONNECT__url: http://k8kafka-cp-kafka-connect.kpops.svc.cluster.local:8083\nresources:\n requests:\n cpu: 200m\n memory: 300Mi\n limits:\n cpu: 200m\n memory: 300Mi\n
"}, {"location": "user/getting-started/setup/#check-the-status-of-your-deployments", "title": "Check the status of your deployments", "text": "Now we will check if all the pods are running in our namespace. You can list all pods in the namespace with this command:
kubectl --namespace kpops get pods\n
Then you should see the following output in your terminal:
NAME READY STATUS RESTARTS AGE\nk8kafka-cp-kafka-connect-8fc7d544f-8pjnt 1/1 Running 0 15m\nk8kafka-cp-zookeeper-0 1/1 Running 0 15m\nk8kafka-cp-kafka-0 1/1 Running 0 15m\nk8kafka-cp-schema-registry-588f8c65db-jdwbq 1/1 Running 0 15m\nk8kafka-cp-rest-6bbfd7b645-nwkf8 1/1 Running 0 15m\nstreams-explorer-54db878c67-s8wbz 1/1 Running 0 15m\n
Pay attention to the STATUS
row. The pods should have a status of Running
.
KPOps comes as a PyPI package. You can install it with pip
:
pip install kpops\n
"}, {"location": "user/getting-started/teardown/", "title": "Teardown resources", "text": ""}, {"location": "user/getting-started/teardown/#kpops-teardown-commands", "title": "KPOps teardown commands", "text": "destroy
: Removes Kubernetes resources.reset
: Runs destroy
, resets the states of Kafka Streams apps and resets offsets to zero.clean
: Runs reset
and removes all Kafka resources.The kpops
CLI can be used to destroy a pipeline that was previously deployed with KPOps. In case that doesn't work, the pipeline can always be taken down manually with helm
(see section Infrastructure).
Export environment variables.
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Navigate to the examples
folder. Replace the <name-of-the-example-directory>
with the example you want to tear down. For example the atm-fraud-detection
.
Remove the pipeline
# Uncomment 1 line to either destroy, reset or clean.\n\n# poetry run kpops destroy <name-of-the-example-directory>/pipeline.yaml \\\n# poetry run kpops reset <name-of-the-example-directory>/pipeline.yaml \\\n# poetry run kpops clean <name-of-the-example-directory>/pipeline.yaml \\\n--config <name-of-the-example-directory>/config.yaml \\\n--execute\n
Delete namespace:
kubectl delete namespace kpops\n
Note
In case kpops destroy
is not working one can uninstall the pipeline services one by one. This is equivalent to running kpops destroy
. In case a clean uninstall (like the one kpops clean
does) is needed, one needs to also delete the topics and schemas created by deployment of the pipeline.
Delete local cluster:
k3d cluster delete kpops\n
"}, {"location": "user/getting-started/teardown/#local-image-registry", "title": "Local image registry", "text": "Delete local registry:
k3d registry delete k3d-kpops-registry.localhost\n
"}, {"location": "user/migration-guide/v1-v2/", "title": "Migrate from V1 to V2", "text": ""}, {"location": "user/migration-guide/v1-v2/#derive-component-type-automatically-from-class-name", "title": "Derive component type automatically from class name", "text": "KPOps automatically infers the component type
from the class name. Therefore, the type
and schema_type
attributes can be removed from your custom components. By convention the type
would be the lower, and kebab cased name of the class.
class MyCoolStreamApp(StreamsApp):\n- type = \"my-cool-stream-app\"\n+ ...\n
Because of this new convention producer
has been renamed to producer-app
. This must be addressed in your pipeline.yaml
and defaults.yaml
.
- producer:\n+ producer-app:\n app:\n streams:\n outputTopic: output_topic\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n
"}, {"location": "user/migration-guide/v1-v2/#refactor-inputoutput-types", "title": "Refactor input/output types", "text": ""}, {"location": "user/migration-guide/v1-v2/#to-section", "title": "To section", "text": "In the to
section these have changed:
output
role
is set, type is inferred to be extra
error
needs to be defined explicitly to:\n topics:\n ${pipeline_name}-topic-1:\n- type: extra\n role: \"role-1\"\n ...\n ${pipeline_name}-topic-2:\n- type: output\n ...\n ${pipeline_name}-topic-3:\n type: error\n ...\n
"}, {"location": "user/migration-guide/v1-v2/#from-section", "title": "From section", "text": "In the from
section these have changed:
input
input-pattern
type is replaced by pattern
role
is set, type is inferred to be extra
role
is set, type is explicitly set to pattern
, this would be inferred type extra-pattern
from:\n topics:\n ${pipeline_name}-input-topic:\n- type: input\n ...\n ${pipeline_name}-extra-topic:\n- type: extra\n role: topic-role\n ...\n ${pipeline_name}-input-pattern-topic:\n- type: input-pattern\n+ type: pattern\n ...\n ${pipeline_name}-extra-pattern-topic:\n- type: extra-pattern\n+ type: pattern\n role: some-role\n ...\n
"}, {"location": "user/migration-guide/v1-v2/#remove-camel-case-conversion-of-internal-models", "title": "Remove camel case conversion of internal models", "text": "All the internal KPOps models are now snake_case, and only Helm/Kubernetes values require camel casing. You can find an example of a pipeline.yaml
in the following. Notice that the app
section here remains untouched.
...\ntype: streams-app\n name: streams-app\n namespace: namespace\n app:\n streams:\n brokers: ${brokers}\n schemaRegistryUrl: ${schema_registry_url}\n autoscaling:\n consumerGroup: consumer-group\n lagThreshold: 0\n enabled: false\n pollingInterval: 30\n\n to:\n topics:\n ${pipeline_name}-output-topic:\n type: error\n- keySchema: key-schema\n+ key_schema: key-schema\n- valueSchema: value-schema\n+ value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs:\n cleanup.policy: compact\n models:\n model: model\n prefix: ${pipeline_name}-\n- repoConfig:\n+ repo_config:\n- repositoryName: bakdata-streams-bootstrap\n+ repository_name: bakdata-streams-bootstrap\n url: https://bakdata.github.io/streams-bootstrap/\n- repoAuthFlags:\n+ repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"1.0.4\"\n...\n
"}, {"location": "user/migration-guide/v1-v2/#refactor-handling-of-helm-flags", "title": "Refactor handling of Helm flags", "text": "If you are using the KubernetesApp
class to define your own Kubernetes resource to deploy, the abstract function get_helm_chart
that returns the chart for deploying the app using Helm is now a Python property and renamed to helm_chart
.
class MyCoolApp(KubernetesApp):\n\n+ @property\n @override\n- def get_helm_chart(self) -> str:\n+ def helm_chart(self) -> str:\n return \"./charts/charts-folder\"\n
"}, {"location": "user/migration-guide/v1-v2/#plural-broker-field-in-pipeline-config", "title": "Plural broker field in pipeline config", "text": "Since you can pass a comma separated string of broker address, the broker field in KPOps is now plural. The pluralization has affected multiple areas:
"}, {"location": "user/migration-guide/v1-v2/#configyaml", "title": "config.yaml", "text": " environment: development\n- broker: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n+ brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n kafka_connect_host: \"http://localhost:8083\"\n kafka_rest_host: \"http://localhost:8082\"\n schema_registry_url: \"http://localhost:8081\"\n
"}, {"location": "user/migration-guide/v1-v2/#pipelineyaml-and-defaultyaml", "title": "pipeline.yaml and default.yaml", "text": "The variable is now called brokers
.
...\n app:\n streams:\n- brokers: ${broker}\n+ brokers: ${brokers}\n schemaRegistryUrl: ${schema_registry_url}\n nameOverride: override-with-this-name\n imageTag: \"1.0.0\"\n...\n
"}, {"location": "user/migration-guide/v1-v2/#environment-variable", "title": "Environment variable", "text": "Previously, if you set the environment variable KPOPS_KAFKA_BROKER
, you need to replace that now with KPOPS_KAFKA_BROKERS
.
Jump to the summary
"}, {"location": "user/migration-guide/v2-v3/#use-hash-and-trim-long-helm-release-names-instead-of-only-trimming", "title": "Use hash and trim long Helm release names instead of only trimming", "text": "KPOps handles long (more than 53 characters) Helm releases names differently. Helm will not find your (long) old release names anymore. Therefore, it is recommended that you should once destroy your pipeline with KPOps v2 to remove old Helm release names. After a clean destroy, re-deploy your pipeline with the KPOps v3.
For example if you have a component with the Helm release name example-component-name-too-long-fake-fakefakefakefakefake
. The new release name will shorten the original name to 53 characters and then replace the last 6 characters of the trimmed name with the first 5 characters of the result of SHA-1(helm_release_name).
example-component-name-too-long-fake-fakefakef-0a7fc ----> 53 chars\n---------------------------------------------- -----\n ^Shortened helm_release_name ^first 5 characters of SHA1(helm_release_name)\n
"}, {"location": "user/migration-guide/v2-v3/#create-helmapp-component", "title": "Create HelmApp component", "text": "All Helm-specific parts of the built-in KubernetesApp
have been extracted to a new child component that is more appropriately named HelmApp
. It has to be renamed in your existing pipeline defintions and custom components module.
-- type: kubernetes-app\n+- type: helm-app\n name: foo\n
"}, {"location": "user/migration-guide/v2-v3/#custom_modulepy", "title": "custom_module.py", "text": "- from kpops.components import KubernetesApp\n+ from kpops.components import HelmApp\n\n\n- class CustomHelmApp(KubernetesApp):\n+ class CustomHelmApp(HelmApp):\n ...\n
"}, {"location": "user/migration-guide/v2-v3/#create-streamsbootstrap-component-refactor-cleanup-jobs-as-individual-helmapp", "title": "Create StreamsBootstrap component & refactor cleanup jobs as individual HelmApp", "text": "Previously the default KafkaApp
component configured the streams-bootstrap Helm Charts. Now, this component is no longer tied to Helm (or Kubernetes). Instead, there is a new StreamsBootstrap
component that configures the Helm Chart repository for the components that use it, e.g. StreamsApp
and ProducerApp
. If you are using non-default values for the Helm Chart repository or version, it has to be updated as shown below.
kafka-app:\n app:\n streams: ...\n\n+ streams-bootstrap:\n repo_config: ...\n version: ...\n
"}, {"location": "user/migration-guide/v2-v3/#refactor-kafka-connector-resetter-as-individual-helmapp", "title": "Refactor Kafka Connector resetter as individual HelmApp", "text": "Internally, the Kafka Connector resetter is now its own standard HelmApp
, removing a lot of the shared code. It is configured using the resetter_namespace
(formerly namespace
) and resetter_values
attributes.
kafka-connector:\n- namespace: my-namespace\n+ resetter_namespace: my-namespace\n
"}, {"location": "user/migration-guide/v2-v3/#make-kafka-rest-proxy-kafka-connect-hosts-default-and-improve-schema-registry-config", "title": "Make Kafka REST Proxy & Kafka Connect hosts default and improve Schema Registry config", "text": "The breaking changes target the config.yaml
file:
The schema_registry_url
is replaced with schema_registry.url
(default http://localhost:8081
) and schema_registry.enabled
(default false
).
kafka_rest_host
is renamed to kafka_rest.url
(default http://localhost:8082
).
kafka_connect_host
is replaced with kafka_connect.url
(default http://localhost:8083
).
brokers
is renamed to kafka_brokers
.
The environment variable names of these config fields changed respectively. Please refer to the environment variables documentation page to see the newest changes.
"}, {"location": "user/migration-guide/v2-v3/#configyaml", "title": "config.yaml", "text": " environment: development\n- brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n- kafka_rest_host: \"http://my-custom-rest.url:8082\"\n- kafka_connect_host: \"http://my-custom-connect.url:8083\"\n- schema_registry_url: \"http://my-custom-sr.url:8081\"\n+ kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n+ kafka_rest:\n+ url: \"http://my-custom-rest.url:8082\"\n+ kafka_connect:\n+ url: \"http://my-custom-connect.url:8083\"\n+ schema_registry:\n+ enabled: true\n+ url: \"http://my-custom-sr.url:8081\"\n
"}, {"location": "user/migration-guide/v2-v3/#pipelineyaml-and-defaultyaml", "title": "pipeline.yaml and default.yaml", "text": "The variable is now called kafka_brokers
.
...\n app:\n streams:\n- brokers: ${brokers}\n+ brokers: ${kafka_brokers}\n schemaRegistryUrl: ${schema_registry_url}\n nameOverride: override-with-this-name\n imageTag: \"1.0.0\"\n...\n
"}, {"location": "user/migration-guide/v2-v3/#define-custom-components-module-pipeline-base-dir-globally", "title": "Define custom components module & pipeline base dir globally", "text": "Warning
The previous CLI parameters have been removed.
The options for a custom components_module
and pipeline_base_dir
are now global settings, defined in config.yaml
.
kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n environment: development\n+ components_module: components\n+ pipeline_base_dir: pipelines\n
"}, {"location": "user/migration-guide/v2-v3/#move-github-action-to-repsitory-root", "title": "Move GitHub action to repsitory root", "text": "The location of the GitHub action has changed, and it's now available directly as bakdata/kpops
.
You'll need to change it in your GitHub CI workflows.
steps:\n - name: kpops deploy\n- uses: bakdata/kpops/actions/kpops-runner@main\n+ uses: bakdata/kpops@main\n with:\n command: deploy --execute\n # ...\n
"}, {"location": "user/migration-guide/v2-v3/#allow-overriding-config-files", "title": "Allow overriding config files", "text": "Specifying the environment is no longer mandatory. If not defined, only the global files will be used.
environment
is no longer specified in config.yaml
. Instead, it can be either set via the CLI flag --environment
or with the environment variable KPOPS_ENVIRONMENT
.
The --config
flag in the CLI now points to the directory that contains config*.yaml
files. The files to be used are resolved based on the provided (or not) environment
.
- environment: development\n kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n schema_registry:\n enabled: true\n url: \"http://my-custom-sr.url:8081\"\n
"}, {"location": "user/migration-guide/v2-v3/#change-substitution-variables-separator-to", "title": "Change substitution variables separator to .
", "text": "The delimiter in the substitution variables is changed to .
.
steps:\n - type: scheduled-producer\n app:\n labels:\n- app_type: \"${component_type}\"\n- app_name: \"${component_name}\"\n- app_schedule: \"${component_app_schedule}\"\n+ app_type: \"${component.type}\"\n+ app_name: \"${component.name}\"\n+ app_schedule: \"${component.app.schedule}\"\n
"}, {"location": "user/migration-guide/v2-v3/#configyaml_3", "title": "config.yaml", "text": "topic_name_config:\n- default_error_topic_name: \"${pipeline_name}-${component_name}-dead-letter-topic\"\n- default_output_topic_name: \"${pipeline_name}-${component_name}-topic\"\n+ default_error_topic_name: \"${pipeline_name}-${component.name}-dead-letter-topic\"\n+ default_output_topic_name: \"${pipeline_name}-${component.name}-topic\"\n
"}, {"location": "user/migration-guide/v2-v3/#refactor-generate-template-for-python-api-usage", "title": "Refactor generate template for Python API usage", "text": "The template
method of every pipeline component has been renamed to manifest
as it is no longer strictly tied to Helm template. Instead, it can be used to render the final resources of a component, such as Kubernetes manifests.
There is also a new kpops manifest
command replacing the existing kpops generate --template
flag.
If you're using this functionality in your custom components, it needs to be updated.
from kpops.components.base_components.models.resource import Resource\n\n @override\n- def template(self) -> None:\n+ def manifest(self) -> Resource:\n \"\"\"Render final component resources, e.g. Kubernetes manifests.\"\"\"\n return [] # list of manifests\n
"}, {"location": "user/migration-guide/v2-v3/#namespace-substitution-vars", "title": "Namespace substitution vars", "text": "The global configuration variables are now namespaced under the config key, such as ${config.kafka_brokers}
, ${config.schema_registry.url}
. Same with pipeline variables, e.g. ${pipeline_name} \u2192 ${pipeline.name}
. This would make it more uniform with the existing ${component.<key>}
variables.
name: kafka-app\n- prefix: ${pipeline_name}-\n+ prefix: ${pipeline.name}-\n app:\n streams:\n- brokers: ${kafka_brokers}\n- schemaRegistryUrl: ${schema_registry.url}\n+ brokers: ${config.kafka_brokers}\n+ schemaRegistryUrl: ${config.schema_registry.url}\n
"}, {"location": "user/migration-guide/v2-v3/#summary", "title": "Summary", "text": "Warning
Helm will not find your (long) old release names anymore.
defaults.yaml kafka-app:\n app:\n streams: ...\n\n+ streams-bootstrap:\n repo_config: ...\n version: ...\n
pipeline.yaml - - type: kubernetes-app\n+ - type: helm-app\n ...\n - type: kafka-app\n app:\n- brokers: ${brokers}\n+ brokers: ${config.kafka_brokers}\n labels:\n- app_schedule: \"${component_app_schedule}\"\n+ app_schedule: \"${component.app.schedule}\"\n ...\n - type: kafka-connector\n- namespace: my-namespace\n+ resetter_namespace: my-namespace\n ...\n
config.yaml - environment: development\n\n+ components_module: components\n\n+ pipeline_base_dir: pipelines\n\n- brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n+ kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n\n- kafka_rest_host: \"http://my-custom-rest.url:8082\"\n+ kafka_rest:\n+ url: \"http://my-custom-rest.url:8082\"\n\n- kafka_connect_host: \"http://my-custom-connect.url:8083\"\n+ kafka_connect:\n+ url: \"http://my-custom-connect.url:8083\"\n\n- schema_registry_url: \"http://my-custom-sr.url:8081\"\n+ schema_registry:\n+ enabled: true\n+ url: \"http://my-custom-sr.url:8081\"\n\n topic_name_config:\n- default_error_topic_name: \"${pipeline_name}-${component_name}-dead-letter-topic\"\n+ default_error_topic_name: \"${pipeline.name}-${component.name}-dead-letter-topic\"\n ...\n
custom_module.py - from kpops.components import KubernetesApp\n+ from kpops.components import HelmApp\n+ from kpops.components.base_components.models.resource import Resource\n\n- class CustomHelmApp(KubernetesApp):\n+ class CustomHelmApp(HelmApp):\n\n @override\n- def template(self) -> None:\n+ def manifest(self) -> Resource:\n \"\"\"Render final component resources, e.g. Kubernetes manifests.\"\"\"\n return [] # list of manifests\n ...\n
github_ci_workflow.yaml steps:\n - name: ...\n- uses: bakdata/kpops/actions/kpops-runner@main\n+ uses: bakdata/kpops@main\n ...\n
"}, {"location": "user/migration-guide/v3-v4/", "title": "Migrate from V3 to V4", "text": ""}, {"location": "user/migration-guide/v3-v4/#distribute-defaults-across-multiple-files", "title": "Distribute defaults across multiple files", "text": "Warning
The --defaults
flag is removed
It is possible now to use multiple default values. The defaults.yaml
(or defaults_<env>.yaml
) files can be distributed across multiple files. These will be picked up by KPOps and get merged into a single pipeline.yaml
file. KPOps starts from reading the default files from where the pipeline path is defined and picks up every defaults file on its way to where the pipeline_base_dir
is defined.
For example, imagine the following folder structure:
\u2514\u2500 pipelines\n \u2514\u2500\u2500 distributed-defaults\n \u251c\u2500\u2500 defaults.yaml\n \u251c\u2500\u2500 defaults_dev.yaml\n \u2514\u2500\u2500 pipeline-deep\n \u251c\u2500\u2500 defaults.yaml\n \u2514\u2500\u2500 pipeline.yaml\n
The pipeline_base_dir
is configured to pipelines
. Now if we generate this pipeline with the following command:
kpops generate \\\n --environment dev\n ./pipelines/distributed-defaults/pipeline-deep/pipeline.yaml\n
The defaults would be picked in the following order (high to low priority):
./pipelines/distributed-defaults/pipeline-deep/defaults.yaml
./pipelines/distributed-defaults/defaults_dev.yaml
./pipelines/distributed-defaults/defaults.yaml
The deepest defaults.yaml
file in the folder hierarchy (i.e., the closest one to the pipeline.yaml
) overwrites the higher-level defaults' values.
The global timeout
setting has been removed. Instead, an individual timeout can be set for each external service. The default is 30 seconds.
- timeout: 300\n\n kafka_rest:\n url: \"http://my-custom-rest.url:8082\"\n+ timeout: 30\n kafka_connect:\n url: \"http://my-custom-connect.url:8083\"\n+ timeout: 30\n schema_registry:\n enabled: true\n url: \"http://my-custom-sr.url:8081\"\n+ timeout: 30\n
"}, {"location": "user/migration-guide/v5-v6/", "title": "Migrate from V5 to V6", "text": ""}, {"location": "user/migration-guide/v5-v6/#deploy-multiple-pipelines", "title": "Deploy multiple pipelines", "text": "KPOps can now deploy multiple pipelines in a single command. It is possible to pass one or many pipeline.yaml files or pass a directory with many pipeline.yaml files within it.
The environment variable KPOPS_PIPELINE_PATH
is changed to KPOPS_PIPELINE_PATHS
.
Read more:
KPops Python API is now stable and separated from the CLI! \ud83c\udf89
"}, {"location": "user/references/cli-commands/", "title": "CLI Usage", "text": "Usage:
$ kpops [OPTIONS] COMMAND [ARGS]...\n
Options:
-V, --version
: Print KPOps version--install-completion
: Install completion for the current shell.--show-completion
: Show completion for the current shell, to copy it or customize the installation.--help
: Show this message and exit.Commands:
clean
: Clean pipeline stepsdeploy
: Deploy pipeline stepsdestroy
: Destroy pipeline stepsgenerate
: Generate enriched pipeline representationinit
: Initialize a new KPOps project.manifest
: Render final resource representationreset
: Reset pipeline stepsschema
: Generate JSON schema.kpops clean
", "text": "Clean pipeline steps
Usage:
$ kpops clean [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops deploy
", "text": "Deploy pipeline steps
Usage:
$ kpops deploy [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops destroy
", "text": "Destroy pipeline steps
Usage:
$ kpops destroy [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops generate
", "text": "Enrich pipeline steps with defaults. The enriched pipeline is used for all KPOps operations (deploy, destroy, ...).
Usage:
$ kpops generate [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--help
: Show this message and exit.kpops init
", "text": "Initialize a new KPOps project.
Usage:
$ kpops init [OPTIONS] PATH\n
Arguments:
PATH
: Path for a new KPOps project. It should lead to an empty (or non-existent) directory. The part of the path that doesn't exist will be created. [required]Options:
--config-include-opt / --no-config-include-opt
: Whether to include non-required settings in the generated 'config.yaml' [default: no-config-include-opt]--help
: Show this message and exit.kpops manifest
", "text": "In addition to generate, render final resource representation for each pipeline step, e.g. Kubernetes manifests.
Usage:
$ kpops manifest [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--help
: Show this message and exit.kpops reset
", "text": "Reset pipeline steps
Usage:
$ kpops reset [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops schema
", "text": "Generate JSON schema.
The schemas can be used to enable support for KPOps files in a text editor.
Usage:
$ kpops schema [OPTIONS] SCOPE:{pipeline|defaults|config}\n
Arguments:
SCOPE:{pipeline|defaults|config}
: Scope of the generated schemapipeline: Schema of PipelineComponents. Includes the built-in KPOps components by default. To include custom components, provide components module in config.\n\nconfig: Schema of KpopsConfig. [required]\n
Options:
--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--include-stock-components / --no-include-stock-components
: Include the built-in KPOps components. [default: include-stock-components]--help
: Show this message and exit.We are working towards first-class editor support by providing plugins that work out of the box.
settings.json
{\n \"yaml.schemas\": {\n \"https://bakdata.github.io/kpops/4.0/schema/pipeline.json\": [\n \"pipeline.yaml\",\n \"pipeline_*.yaml\"\n ],\n \"https://bakdata.github.io/kpops/4.0/schema/defaults.json\": [\n \"defaults.yaml\",\n \"defaults_*.yaml\"\n ],\n \"https://bakdata.github.io/kpops/4.0/schema/config.json\": [\n \"config.yaml\",\n \"config_*.yaml\"\n ]\n }\n}\n
Advanced usage
It is possible to generate schemas with the kpops schema
command. Useful for including custom components or when using a pre-release version of KPOps.
KPOps provides JSON schemas that enable autocompletion and validation for all YAML files that the user must work with.
"}, {"location": "user/references/editor-integration/#supported-files", "title": "Supported files", "text": "pipeline.yaml
defaults.yaml
config.yaml
We provided a GitHub composite action bakdata/kpops
that installs and executes KPOps commands with the given parameters.
steps:\n # ...\n # This step is useful for debugging reasons\n - name: Generate Kafka pipeline\n uses: bakdata/kpops@main\n with:\n command: generate\n working-directory: home/my-kpops-root-dir\n pipeline: pipelines/my-pipeline-file.yaml\n kpops-version: 1.2.3\n\n # It is possible to use a pre-release KPOps version from TestPyPI https://test.pypi.org/project/kpops/#history\n - name: Deploy Kafka pipeline\n uses: bakdata/kpops@main\n with:\n command: deploy --execute\n working-directory: home/my-kpops-root-dir\n pipeline: pipelines/my-pipeline-file.yaml\n kpops-version: 1.2.5.dev20230707132709\n # ...\n
"}]}
\ No newline at end of file
+{"config": {"lang": ["en"], "separator": "[\\s\\-]+", "pipeline": ["stopWordFilter"]}, "docs": [{"location": "developer/api/", "title": "Python API", "text": ""}, {"location": "developer/api/#kpops.api", "title": "kpops.api", "text": ""}, {"location": "developer/api/#kpops.api.clean", "title": "clean", "text": "clean(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Clean pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def clean(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Clean pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def clean_runner(component: PipelineComponent):\n await component.destroy(dry_run)\n log_action(\"Clean\", component)\n await component.clean(dry_run)\n\n async def async_clean():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(clean_runner, reverse=True)\n await pipeline_tasks\n else:\n for component in reversed(pipeline.components):\n await clean_runner(component)\n\n asyncio.run(async_clean())\n
"}, {"location": "developer/api/#kpops.api.deploy", "title": "deploy", "text": "deploy(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Deploy pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def deploy(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Deploy pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def deploy_runner(component: PipelineComponent):\n log_action(\"Deploy\", component)\n await component.deploy(dry_run)\n\n async def async_deploy():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(deploy_runner)\n await pipeline_tasks\n else:\n for component in pipeline.components:\n await deploy_runner(component)\n\n asyncio.run(async_deploy())\n
"}, {"location": "developer/api/#kpops.api.destroy", "title": "destroy", "text": "destroy(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Destroy pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def destroy(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Destroy pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def destroy_runner(component: PipelineComponent):\n log_action(\"Destroy\", component)\n await component.destroy(dry_run)\n\n async def async_destroy():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(\n destroy_runner, reverse=True\n )\n await pipeline_tasks\n else:\n for component in reversed(pipeline.components):\n await destroy_runner(component)\n\n asyncio.run(async_destroy())\n
"}, {"location": "developer/api/#kpops.api.generate", "title": "generate", "text": "generate(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, verbose: bool = False) -> Pipeline\n
Generate enriched pipeline representation.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: False
Pipeline
Generated Pipeline
object.
kpops/api/__init__.py
def generate(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n verbose: bool = False,\n) -> Pipeline:\n \"\"\"Generate enriched pipeline representation.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :return: Generated `Pipeline` object.\n \"\"\"\n kpops_config = KpopsConfig.create(\n config,\n dotenv,\n environment,\n verbose,\n )\n pipeline = _create_pipeline(pipeline_path, kpops_config, environment)\n log.info(f\"Picked up pipeline '{pipeline_path.parent.name}'\")\n if steps:\n component_names = steps\n log.debug(\n f\"KPOPS_PIPELINE_STEPS is defined with values: {component_names} and filter type of {filter_type.value}\"\n )\n\n predicate = filter_type.create_default_step_names_filter_predicate(\n component_names\n )\n pipeline.filter(predicate)\n log.info(f\"Filtered pipeline:\\n{pipeline.step_names}\")\n return pipeline\n
"}, {"location": "developer/api/#kpops.api.init", "title": "init", "text": "init(path: Path, config_include_opt: bool = False)\n
Initiate a default empty project.
PARAMETER DESCRIPTIONpath
Directory in which the project should be initiated.
TYPE: Path
conf_incl_opt
Whether to include non-required settings in the generated config file.
Source code in
kpops/api/__init__.py
def init(\n path: Path,\n config_include_opt: bool = False,\n):\n \"\"\"Initiate a default empty project.\n\n :param path: Directory in which the project should be initiated.\n :param conf_incl_opt: Whether to include non-required settings\n in the generated config file.\n \"\"\"\n if not path.exists():\n path.mkdir(parents=False)\n elif next(path.iterdir(), False):\n log.warning(\"Please provide a path to an empty directory.\")\n return\n init_project(path, config_include_opt)\n
"}, {"location": "developer/api/#kpops.api.manifest", "title": "manifest", "text": "manifest(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, verbose: bool = False) -> list[Resource]\n
Generate pipeline, return final resource representations for each step.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: False
list[Resource]
Resources.
Source code inkpops/api/__init__.py
def manifest(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n verbose: bool = False,\n) -> list[Resource]:\n \"\"\"Generate pipeline, return final resource representations for each step.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :return: Resources.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n resources: list[Resource] = []\n for component in pipeline.components:\n resource = component.manifest()\n resources.append(resource)\n return resources\n
"}, {"location": "developer/api/#kpops.api.reset", "title": "reset", "text": "reset(pipeline_path: Path, dotenv: list[Path] | None = None, config: Path = Path(), steps: set[str] | None = None, filter_type: FilterType = FilterType.INCLUDE, environment: str | None = None, dry_run: bool = True, verbose: bool = True, parallel: bool = False)\n
Reset pipeline steps.
PARAMETER DESCRIPTIONpipeline_path
Path to pipeline definition yaml file.
TYPE: Path
dotenv
Paths to dotenv files.
TYPE: list[Path] | None
DEFAULT: None
config
Path to the dir containing config.yaml files.
TYPE: Path
DEFAULT: Path()
steps
Set of steps (components) to apply the command on.
TYPE: set[str] | None
DEFAULT: None
filter_type
Whether steps
should include/exclude the steps.
TYPE: FilterType
DEFAULT: INCLUDE
dry_run
Whether to dry run the command or execute it.
TYPE: bool
DEFAULT: True
environment
The environment to generate and deploy the pipeline to.
TYPE: str | None
DEFAULT: None
verbose
Enable verbose printing.
TYPE: bool
DEFAULT: True
parallel
Enable or disable parallel execution of pipeline steps.
TYPE: bool
DEFAULT: False
kpops/api/__init__.py
def reset(\n pipeline_path: Path,\n dotenv: list[Path] | None = None,\n config: Path = Path(),\n steps: set[str] | None = None,\n filter_type: FilterType = FilterType.INCLUDE,\n environment: str | None = None,\n dry_run: bool = True,\n verbose: bool = True,\n parallel: bool = False,\n):\n \"\"\"Reset pipeline steps.\n\n :param pipeline_path: Path to pipeline definition yaml file.\n :param dotenv: Paths to dotenv files.\n :param config: Path to the dir containing config.yaml files.\n :param steps: Set of steps (components) to apply the command on.\n :param filter_type: Whether `steps` should include/exclude the steps.\n :param dry_run: Whether to dry run the command or execute it.\n :param environment: The environment to generate and deploy the pipeline to.\n :param verbose: Enable verbose printing.\n :param parallel: Enable or disable parallel execution of pipeline steps.\n \"\"\"\n pipeline = kpops.generate(\n pipeline_path=pipeline_path,\n dotenv=dotenv,\n config=config,\n steps=steps,\n filter_type=filter_type,\n environment=environment,\n verbose=verbose,\n )\n\n async def reset_runner(component: PipelineComponent):\n await component.destroy(dry_run)\n log_action(\"Reset\", component)\n await component.reset(dry_run)\n\n async def async_reset():\n if parallel:\n pipeline_tasks = pipeline.build_execution_graph(reset_runner, reverse=True)\n await pipeline_tasks\n else:\n for component in reversed(pipeline.components):\n await reset_runner(component)\n\n asyncio.run(async_reset())\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline", "title": "kpops.pipeline.Pipeline", "text": " Bases: BaseModel
Pipeline representation.
Source code inkpops/pipeline.py
class Pipeline(BaseModel):\n \"\"\"Pipeline representation.\"\"\"\n\n _component_index: dict[str, PipelineComponent] = {}\n _graph: nx.DiGraph = nx.DiGraph()\n\n model_config = ConfigDict(arbitrary_types_allowed=True)\n\n @property\n def step_names(self) -> list[str]:\n return [step.name for step in self.components]\n\n @computed_field(title=\"Components\")\n @property\n def components(self) -> list[SerializeAsAny[PipelineComponent]]:\n return list(self._component_index.values())\n\n @property\n def last(self) -> PipelineComponent:\n return self.components[-1]\n\n def add(self, component: PipelineComponent) -> None:\n if self._component_index.get(component.id) is not None:\n msg = (\n f\"Pipeline steps must have unique id, '{component.id}' already exists.\"\n )\n raise ValidationError(msg)\n self._component_index[component.id] = component\n self.__add_to_graph(component)\n\n def remove(self, component_id: str) -> None:\n self._component_index.pop(component_id)\n\n def get(self, component_id: str) -> PipelineComponent | None:\n return self._component_index.get(component_id)\n\n def find(self, predicate: ComponentFilterPredicate) -> Iterator[PipelineComponent]:\n \"\"\"Find pipeline components matching a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n :returns: Iterator of components matching the predicate\n \"\"\"\n for component in self.components:\n if predicate(component):\n yield component\n\n def filter(self, predicate: ComponentFilterPredicate) -> None:\n \"\"\"Filter pipeline components using a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n \"\"\"\n for component in self.components:\n # filter out components not matching the predicate\n if not predicate(component):\n self.remove(component.id)\n\n def validate(self) -> None: # pyright: ignore [reportIncompatibleMethodOverride]\n self.__validate_graph()\n\n def to_yaml(self) -> str:\n return yaml.dump(\n self.model_dump(mode=\"json\", by_alias=True, exclude_none=True)[\"components\"]\n )\n\n def build_execution_graph(\n self,\n runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]],\n /,\n reverse: bool = False,\n ) -> Awaitable[None]:\n async def run_parallel_tasks(\n coroutines: list[Coroutine[Any, Any, None]],\n ) -> None:\n tasks = []\n for coro in coroutines:\n tasks.append(asyncio.create_task(coro))\n await asyncio.gather(*tasks)\n\n async def run_graph_tasks(pending_tasks: list[Awaitable[None]]) -> None:\n for pending_task in pending_tasks:\n await pending_task\n\n graph: nx.DiGraph = self._graph.copy() # pyright: ignore[reportAssignmentType, reportGeneralTypeIssues] imprecise type hint in networkx\n\n # We add an extra node to the graph, connecting all the leaf nodes to it\n # in that way we make this node the root of the graph, avoiding backtracking\n root_node = \"root_node_bfs\"\n graph.add_node(root_node)\n\n for node in graph:\n predecessors = list(graph.predecessors(node))\n if not predecessors:\n graph.add_edge(root_node, node)\n\n layers_graph: list[list[str]] = list(nx.bfs_layers(graph, root_node))\n\n sorted_tasks = []\n for layer in layers_graph[1:]:\n if parallel_tasks := self.__get_parallel_tasks_from(layer, runner):\n sorted_tasks.append(run_parallel_tasks(parallel_tasks))\n\n if reverse:\n sorted_tasks.reverse()\n\n return run_graph_tasks(sorted_tasks)\n\n def __getitem__(self, component_id: str) -> PipelineComponent:\n try:\n return self._component_index[component_id]\n except KeyError as exc:\n msg = f\"Component {component_id} not found\"\n raise ValueError(msg) from exc\n\n def __bool__(self) -> bool:\n return bool(self._component_index)\n\n def __iter__(self) -> Iterator[PipelineComponent]: # pyright: ignore [reportIncompatibleMethodOverride]\n yield from self._component_index.values()\n\n def __len__(self) -> int:\n return len(self.components)\n\n def __add_to_graph(self, component: PipelineComponent):\n self._graph.add_node(component.id)\n\n for input_topic in component.inputs:\n self.__add_input(input_topic.id, component.id)\n\n for output_topic in component.outputs:\n self.__add_output(output_topic.id, component.id)\n\n def __add_output(self, topic_id: str, source: str) -> None:\n self._graph.add_node(topic_id)\n self._graph.add_edge(source, topic_id)\n\n def __add_input(self, topic_id: str, target: str) -> None:\n self._graph.add_node(topic_id)\n self._graph.add_edge(topic_id, target)\n\n def __get_parallel_tasks_from(\n self,\n layer: list[str],\n runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]],\n ) -> list[Coroutine[Any, Any, None]]:\n def gen_parallel_tasks():\n for node_in_layer in layer:\n # check if component, skip topics\n if (component := self._component_index.get(node_in_layer)) is not None:\n yield runner(component)\n\n return list(gen_parallel_tasks())\n\n def __validate_graph(self) -> None:\n if not nx.is_directed_acyclic_graph(self._graph):\n msg = \"Pipeline is not a valid DAG.\"\n raise ValueError(msg)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.components", "title": "components property
", "text": "components: list[SerializeAsAny[PipelineComponent]]\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.last", "title": "last property
", "text": "last: PipelineComponent\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.step_names", "title": "step_names property
", "text": "step_names: list[str]\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.add", "title": "add", "text": "add(component: PipelineComponent) -> None\n
Source code in kpops/pipeline.py
def add(self, component: PipelineComponent) -> None:\n if self._component_index.get(component.id) is not None:\n msg = (\n f\"Pipeline steps must have unique id, '{component.id}' already exists.\"\n )\n raise ValidationError(msg)\n self._component_index[component.id] = component\n self.__add_to_graph(component)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.build_execution_graph", "title": "build_execution_graph", "text": "build_execution_graph(runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]], /, reverse: bool = False) -> Awaitable[None]\n
Source code in kpops/pipeline.py
def build_execution_graph(\n self,\n runner: Callable[[PipelineComponent], Coroutine[Any, Any, None]],\n /,\n reverse: bool = False,\n) -> Awaitable[None]:\n async def run_parallel_tasks(\n coroutines: list[Coroutine[Any, Any, None]],\n ) -> None:\n tasks = []\n for coro in coroutines:\n tasks.append(asyncio.create_task(coro))\n await asyncio.gather(*tasks)\n\n async def run_graph_tasks(pending_tasks: list[Awaitable[None]]) -> None:\n for pending_task in pending_tasks:\n await pending_task\n\n graph: nx.DiGraph = self._graph.copy() # pyright: ignore[reportAssignmentType, reportGeneralTypeIssues] imprecise type hint in networkx\n\n # We add an extra node to the graph, connecting all the leaf nodes to it\n # in that way we make this node the root of the graph, avoiding backtracking\n root_node = \"root_node_bfs\"\n graph.add_node(root_node)\n\n for node in graph:\n predecessors = list(graph.predecessors(node))\n if not predecessors:\n graph.add_edge(root_node, node)\n\n layers_graph: list[list[str]] = list(nx.bfs_layers(graph, root_node))\n\n sorted_tasks = []\n for layer in layers_graph[1:]:\n if parallel_tasks := self.__get_parallel_tasks_from(layer, runner):\n sorted_tasks.append(run_parallel_tasks(parallel_tasks))\n\n if reverse:\n sorted_tasks.reverse()\n\n return run_graph_tasks(sorted_tasks)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.filter", "title": "filter", "text": "filter(predicate: ComponentFilterPredicate) -> None\n
Filter pipeline components using a custom predicate.
PARAMETER DESCRIPTIONpredicate
Filter function, returns boolean value whether the component should be kept or removed
TYPE: ComponentFilterPredicate
kpops/pipeline.py
def filter(self, predicate: ComponentFilterPredicate) -> None:\n \"\"\"Filter pipeline components using a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n \"\"\"\n for component in self.components:\n # filter out components not matching the predicate\n if not predicate(component):\n self.remove(component.id)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.find", "title": "find", "text": "find(predicate: ComponentFilterPredicate) -> Iterator[PipelineComponent]\n
Find pipeline components matching a custom predicate.
PARAMETER DESCRIPTIONpredicate
Filter function, returns boolean value whether the component should be kept or removed
TYPE: ComponentFilterPredicate
Iterator[PipelineComponent]
Iterator of components matching the predicate
Source code inkpops/pipeline.py
def find(self, predicate: ComponentFilterPredicate) -> Iterator[PipelineComponent]:\n \"\"\"Find pipeline components matching a custom predicate.\n\n :param predicate: Filter function,\n returns boolean value whether the component should be kept or removed\n :returns: Iterator of components matching the predicate\n \"\"\"\n for component in self.components:\n if predicate(component):\n yield component\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.get", "title": "get", "text": "get(component_id: str) -> PipelineComponent | None\n
Source code in kpops/pipeline.py
def get(self, component_id: str) -> PipelineComponent | None:\n return self._component_index.get(component_id)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.remove", "title": "remove", "text": "remove(component_id: str) -> None\n
Source code in kpops/pipeline.py
def remove(self, component_id: str) -> None:\n self._component_index.pop(component_id)\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.to_yaml", "title": "to_yaml", "text": "to_yaml() -> str\n
Source code in kpops/pipeline.py
def to_yaml(self) -> str:\n return yaml.dump(\n self.model_dump(mode=\"json\", by_alias=True, exclude_none=True)[\"components\"]\n )\n
"}, {"location": "developer/api/#kpops.pipeline.Pipeline.validate", "title": "validate", "text": "validate() -> None\n
Source code in kpops/pipeline.py
def validate(self) -> None: # pyright: ignore [reportIncompatibleMethodOverride]\n self.__validate_graph()\n
"}, {"location": "developer/auto-generation/", "title": "Auto generation", "text": "Auto generation happens mostly with pre-commit
hooks. You can find the pre-commit configuration here. These pre-commit hooks call different Python scripts to auto generate code for the documentation.
cli_env_vars.env
-- All CLI environment variables in a dotenv
file.cli_env_vars.md
-- All CLI environment variables in a table.config_env_vars.env
-- Almost all pipeline config environment variables in a dotenv
file. The script checks for each field in KpopsConfig
whether it has an env
attribute defined. The script is currently unable to visit the classes of fields like topic_name_config
, hence any environment variables defined there would remain unknown to it.config_env_vars.env
-- Almost all pipeline config environment variables in a table.variable_substitution.yaml
-- A copy of ./tests/pipeline/resources/component-type-substitution/pipeline.yaml
used as an example of substitution.Generated by typer-cli
from the code in main.py
. It is called with Python's subprocess
module.
Generates example pipeline.yaml
and defaults.yaml
for each individual component, stores them and also concatenates them into 1 big pipeline definition and 1 big pipeline defaults definition.
User input
headers/*\\.yaml
-- The top of each example. Includes a description comment, type
and name
. The headers for pipeline.yaml
reside in the pipeline-components
dir and the defaults.yaml
headers reside in the pipeline-defaults
dir. The names of the files must be equal to the respective component type
.sections/*\\.yaml
-- Each YAML file contains a single section (component attribute) definition. The intention is to keep the minimal set of definitions there from which any component definition can be built. The names of the files must be equal to the respective component type
and the attribute name. The sections are used for both defaults.yaml
and pipeline.yaml
generation and reside in the pipeline-components
dir.Generated
pipeline-components/dependencies/*
Cached information about KPOps componentspipeline_component_dependencies.yaml
-- Specifies per component which files in the sections
dir should be used for the pipeline.yaml
generation.defaults_pipeline_component_dependencies.yaml
-- Specifies per component which files in the sections
dir should be used for the defaults.yaml
generation.kpops_structure.yaml
-- Specifies the inheritance hierarchy of the components and what sections exist in each component.pipeline-components/*\\.yaml
-- All single-component pipeline definitions and one big (complete) pipeline.yaml
that contains all of them.pipeline-defaults/*\\.yaml
-- All single-component defaults definitions and one big (complete) defaults.yaml
that contains all of them.Welcome! We are glad to have you visit our contributing guide!
If you find any bugs or have suggestions for improvements, please open an issue and optionally a pull request (PR). In the case of a PR, we would appreciate it if you preface it with an issue outlining your goal and means of achieving it.
"}, {"location": "developer/contributing/#git", "title": "git", "text": "We are using git submodules to import the KPOps examples repository. You need to fetch the repository locally on your machine. To do so use this command:
git submodule init\ngit submodule update --recursive\n
This will fetch the resources under the examples
folder.
We advise that you stick to our pre-commit
hooks for code linting, formatting, and auto-generation of documentation. After you install them using poetry run pre-commit install
they're triggered automatically during git commit
. Additionally, you can manually invoke them with poetry run pre-commit run -a
. In order for dprint
to work, you have to manually install it locally. It will work in the CI, so it is also possible to manually carry out formatting changes flagged by dprint
in the CI and skip installing it locally.
To ensure a consistent Python code style, we use Ruff for both linting and formatting. The official docs contain a guide on editor integration.
Our configuration can be found in KPOps' top-level pyproject.toml
.
To ensure a consistent markdown style, we use dprint's Markdown code formatter. Our configuration can be found here.
"}, {"location": "developer/contributing/#css", "title": "CSS", "text": "To ensure a consistent CSS style, we use the malva dprint's plugin. Our configuration can be found here.
"}, {"location": "developer/contributing/#toml", "title": "TOML", "text": "To ensure a consistent TOML style, we use dprint's TOML code formatter. Our configuration can be found here.
"}, {"location": "developer/getting-started/", "title": "Getting started", "text": "Welcome! We are glad to have you visit our developer guide! If you find any bugs or have suggestions for improvements, please open an issue and optionally a pull request (PR). In the case of a PR, we would appreciate it if you preface it with an issue outlining your goal and means of achieving it.
Find more about our code-style or insights into KPOps' code base here in our developer guide.
Work in progress
The developer guide is still under construction. If you have a question left unanswered here, feel free to ask it by opening an issue.
"}, {"location": "user/changelog/", "title": "Changelog", "text": ""}, {"location": "user/changelog/#602-release-date-2024-07-04", "title": "6.0.2 - Release Date: [2024-07-04]", "text": ""}, {"location": "user/changelog/#documentation", "title": "\ud83d\udcdd Documentation", "text": "6.0.0
- #4966.0.0
- #4966.0.0
- #496Update Ruff - #475
Set Pyright to warn on unknown types - #480
Quiet faker debug logs in tests - #483
Add pyright matcher - #481
from.components.<component-name>.type
to input - #473Add support for Python 3.12 - #467
Update Pyright - #468
Remove package classifiers that are automatically assigned by Poetry - #469
Validate autoscaling mandatory fields when enabled - #470
Fix docs CI to include the latest changes to a tagged version in the changelog - #459
Fix tempfile creation - #461
Fix symbolic link to CONTRIBUTING.md and parallel option in action.yaml - #462
Refactor Kafka topics - #447
Refactor PipelineGenerator to use component ids - #460
Fix order of pipeline steps for clean/reset - #450
Fix substitution - #449
Fix cleaner inheritance, parent model should be aliased during instantiation - #452
Refactor enrichment using Pydantic model validator - #444
Refactor pipeline filter and add to public API - #405
Add custom PascalCase to snake_case alias generator - #436
Add parallel flag support to kpops runner - #439
Add message if examples git submodule is not initialized - #432
Update type annotation for deserialized pipeline - #433
Fix broken doc link - #427
Add warning log if SR handler is disabled but URL is set - #428
Update docs of word-count example for v3 & new folder structure - #423
Move ATM fraud to examples repo - #425
Fix broken doc link - #427
Update pydantic dependency - #422
Add git submodule instructions to the contributing.md - #429
Move GitHub action to repository root - #356
Make Kafka REST Proxy & Kafka Connect hosts default and improve Schema Registry config - #354
Create HelmApp component - #370
Change substitution variables separator to .
- #388
Refactor pipeline generator & representation - #392
Define custom components module & pipeline base dir globally - #387
Use hash and trim long Helm release names instead of only trimming - #390
Refactor generate template for Python API usage - #380
Namespace substitution vars - #408
Refactor streams-bootstrap cleanup jobs as individual HelmApp - #398
Refactor Kafka Connector resetter as individual HelmApp - #400
Fix wrong Helm release name character limit - #418
Allow overriding config files - #391
Generate defaults schema - #402
Fix missing component type in pipeline schema - #401
Fix enrichment of nested Pydantic BaseModel - #415
Fix wrong Helm release name character limit - #418
Update release workflow template to support custom changelog file path - #421
Make Kafka REST Proxy & Kafka Connect hosts default and improve Schema Registry config - #354
Migrate to Pydantic v2 - #347
Refactor pipeline generator & representation - #392
Use hash and trim long Helm release names instead of only trimming - #390
Refactor Helm nameOverride
- #397
Mark component type as computed Pydantic field - #399
Refactor generate template for Python API usage - #380
Support multiple inheritance for doc generation - #406
Refactor streams-bootstrap cleanup jobs as individual HelmApp - #398
Refactor Kafka Connector resetter as individual HelmApp - #400
Move GitHub action to repository root - #356
Create HelmApp component - #370
Update docs for substitution variable usage in v3 - #409
Support multiple inheritance for doc generation - #406
Update docs for v3 - #416
Update tests resources - #417
Summarize all breaking changes in diffs at the top of the migration guide - #419
Replace black with ruff - #365
Add toml formatter to dprint - #386
Add malva to dprint - #385
Update KPOps runner with the new options - #395
Fix KPOps action to get package from testPyPI - #396
KPOps 3.0 - #420
Fix early exit upon Helm exit code 1 - #376
Fix docs setup page list indentation - #377
Migrate deprecated mkdocs-material-extensions - #378
Fix docs setup page list indentation - #377
Exclude resources from docs search - #371
Fix environment variables documentation generation - #362
Introduce ruff - #363
Print details on connector name mismatch error - #369
Enable transparent OS environment lookups from internal environment - #368
Refactor component prefix & name - #326
Remove unnecessary condition during inflate - #328
--template
flag is set - #350Add dprint
as the markdown formatter - #337
Publish pre-release docs for PRs & main branch - #339
Align docs colours - #345
Add version dropdown to the documentation - #336
Break the documentation down into smaller subsection - #329
Remove camel case conversion of internal models - #308
Derive component type automatically from class name - #309
Refactor input/output types - #232
v2 - #321
Automatically support schema generation for custom components - #307
Derive component type automatically from class name - #309
Add KPOps Runner GitHub Action to the documentation - #325
Remove :type
and :rtype
from docstrings - #324
Modularize and autogenerate examples for the documentation - #267
Update the variable documentation - #266
--set-file
flag - #311Refactor Helm wrapper and add --set-file
flag - #311
Set default for ToSection topics - #313
Annotate types for ToSection models mapping - #315
Order PipelineComponent fields - #290
Migrate requests to httpx - #302
Refactor CLI using dtyper - #306
Update Black - #294
Fix vulnerability in mkdocs-material - #295
Move breaking changes section upper in the change log config - #287
Update codeowners - #281
Reactivate Windows CI - #255
Downgrade Poetry version on the Windows CI pipeline - #286
Set ANSI theme for output of kpops generate
- #289
Create workflow to lint CI - #260
Fix update docs when releasing - #261
Rename change log message for uncategorized issues - #262
helm repo update <repo-name>
for Helm >3.7 - #239add --namespace option to Helm template command - #237
Add missing type annotation for Pydantic attributes - #238
Fix helm version check - #242
Fix Helm Version Check - #244
Fix import from external module - #256
Remove enable option from helm diff - #235
Refactor variable substitution - #198
Add background to docs home page - #236
Update Poetry version in CI - #247
Add pip cache in KPOps runner action - #249
Check types using Pyright - #251
Remove MyPy - #252
Disable broken Windows CI temporarily - #253
Update release and publish workflows - #254
Fix release & publish workflows - #257
With a couple of easy commands in the shell, and a pipeline.yaml
of under 30 lines, KPOps can not only deploy
a Kafka pipeline1 to a Kubernetes cluster, but also reset
, clean
or destroy
it!
- type: producer-app\n name: data-producer\n app:\n image: bakdata/kpops-demo-sentence-producer\n\n- type: streams-app\n name: word-counter\n to:\n topics:\n ${output_topic_name}:\n type: output\n configs:\n cleanup.policy: compact\n app:\n image: bakdata/kpops-demo-word-count-app\n replicaCount: 1\n\n- type: kafka-sink-connector\n name: redis-sink-connector\n app:\n connector.class: com.github.jcustenborder.kafka.connect.redis.RedisSinkConnector\n redis.hosts: redis-headless:6379\n redis.database: 0\n tasks.max: 1\n key.converter: org.apache.kafka.connect.storage.StringConverter\n value.converter: org.apache.kafka.connect.storage.StringConverter\n
A Kafka pipeline can consist of consecutive streaming applications, producers, and connectors.\u00a0\u21a9
KPOps reads its global configuration that is unrelated to a pipeline's components from config.yaml
.
Consider enabling KPOps' editor integration feature to enjoy the benefits of autocompletion and validation when configuring your pipeline.
To learn about any of the available settings, take a look at the example below.
config.yaml
# CONFIGURATION\n#\n# Custom Python module defining project-specific KPOps components\ncomponents_module: null\n# Base directory to the pipelines (default is current working directory)\npipeline_base_dir: .\n# The Kafka brokers address.\n# REQUIRED\nkafka_brokers: \"http://broker1:9092,http://broker2:9092\"\n# Configure the topic name variables you can use in the pipeline definition.\ntopic_name_config: \n # Configures the value for the variable ${output_topic_name}\n default_output_topic_name: ${pipeline.name}-${component.name}\n # Configures the value for the variable ${error_topic_name}\n default_error_topic_name: ${pipeline.name}-${component.name}-error\n# Configuration for Schema Registry.\nschema_registry:\n # Whether the Schema Registry handler should be initialized.\n enabled: false\n # Address of the Schema Registry.\n url: \"http://localhost:8081\"\n# Configuration for the Kafka REST Proxy.\nkafka_rest:\n # Address of the Kafka REST Proxy.\n url: \"http://localhost:8082\"\n# Configuration for Kafka Connect.\nkafka_connect:\n # Address of Kafka Connect.\n url: \"http://localhost:8083\"\n# The timeout in seconds that specifies when actions like deletion or deploy\n# timeout.\ntimeout: 300\n# Flag for `helm upgrade --install`.\n# Create the release namespace if not present.\ncreate_namespace: false\n# Global flags for Helm.\nhelm_config:\n # Name of kubeconfig context (`--kube-context`)\n context: name\n # Run Helm in Debug mode.\n debug: false\n # Kubernetes API version used for Capabilities.APIVersions\n api_version: null\n# Configure Helm Diff.\nhelm_diff_config: \n # Set of keys that should not be checked.\n ignore:\n - name\n - imageTag\n# Whether to retain clean up jobs in the cluster or uninstall the, after\n# completion.\nretain_clean_jobs: false\n
Environment-specific pipeline definitions
Similarly to defaults, it is possible to have an unlimited amount of additional environment-specific pipeline definitions. The naming convention is the same: add a suffix of the form _{environment}
to the filename.
KPOps has a very efficient way of dealing with repeating settings which manifests as defaults.yaml
. This file provides the user with the power to set defaults for any and all components, thus omitting the need to repeat the same settings in pipeline.yaml
.
See real-world examples for defaults
.
An important mechanic of KPOps is that defaults
set for a component apply to all components that inherit from it.
It is possible, although not recommended, to add settings that are specific to a component's subclass. An example would be configuring offset_topic
under kafka-connector
instead of kafka-source-connector
.
KPOps allows using multiple default values. The defaults.yaml
(or defaults_<env>.yaml
) files can be distributed across multiple files. These will be picked up by KPOps and get merged into a single pipeline.yaml
file. KPOps starts from reading the default files from where the pipeline path is defined and picks up every defaults file on its way to where the pipeline_base_dir
is defined.
The deepest defaults.yaml
file in the folder hierarchy (i.e., the closest one to the pipeline.yaml
) overwrites the higher-level defaults' values.
It is important to note that defaults_{environment}.yaml
overrides only the settings that are explicitly set to be different from the ones in the base defaults
file.
Imagine the following folder structure, where the pipeline_base_dir
is configured to pipelines
:
\u2514\u2500 pipelines\n \u2514\u2500\u2500 distributed-defaults\n \u251c\u2500\u2500 defaults.yaml\n \u251c\u2500\u2500 defaults_dev.yaml\n \u2514\u2500\u2500 pipeline-deep\n \u251c\u2500\u2500 defaults.yaml\n \u2514\u2500\u2500 pipeline.yaml\n
KPOps picks up the defaults in the following order (high to low priority):
./pipelines/distributed-defaults/pipeline-deep/defaults.yaml
./pipelines/distributed-defaults/defaults_dev.yaml
./pipelines/distributed-defaults/defaults.yaml
The defaults
codeblocks in this section contain the full set of settings that are specific to the component. If a setting already exists in a parent config, it will not be included in the child's.
defaults.yaml
# Base Kubernetes App\n#\n# Parent of: HelmApp\n# Child of: PipelineComponent\nkubernetes-app:\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example.\n app: # required\n image: exampleImage # Example\n debug: false # Example\n commandLine: {} # Example\n
"}, {"location": "user/core-concepts/defaults/#kafkaapp", "title": "KafkaApp", "text": "defaults.yaml
# Base component for Kafka-based components.\n#\n# Parent of: ProducerApp, StreamsApp\n# Child of: KubernetesApp\nkafka-app:\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` can contain application-specific settings, hence the user is free to\n # add the key-value pairs they need.\n app: # required\n streams: # required\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n nameOverride: override-with-this-name # kafka-app-specific\n imageTag: \"1.0.0\" # Example values that are shared between streams-app and producer-app\n
"}, {"location": "user/core-concepts/defaults/#streamsapp", "title": "StreamsApp", "text": "defaults.yaml
# StreamsApp component that configures a streams bootstrap app.\n#\n# Child of: KafkaApp\n# More documentation on StreamsApp: https://github.com/bakdata/streams-bootstrap\nstreams-app:\n # No arbitrary keys are allowed under `app`here\n # Allowed configs:\n # https://github.com/bakdata/streams-bootstrap/tree/master/charts/streams-app\n app: # required\n # Streams Bootstrap streams section\n streams: # required, streams-app-specific\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n inputTopics:\n - topic1\n - topic2\n outputTopic: output-topic\n inputPattern: input-pattern\n extraInputTopics:\n input_role1:\n - input_topic1\n - input_topic2\n input_role2:\n - input_topic3\n - input_topic4\n extraInputPatterns:\n pattern_role1: input_pattern1\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n errorTopic: error-topic\n config:\n my.streams.config: my.value\n nameOverride: override-with-this-name # streams-app-specific\n autoscaling: # streams-app-specific\n consumerGroup: consumer-group # required\n lagThreshold: 0 # Average target value to trigger scaling actions.\n enabled: false # Whether to enable auto-scaling using KEDA.\n # This is the interval to check each trigger on.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#pollinginterval\n pollingInterval: 30\n # The period to wait after the last trigger reported active before scaling\n # the resource back to 0. https://keda.sh/docs/2.9/concepts/scaling-deployments/#cooldownperiod\n cooldownPeriod: 300\n # The offset reset policy for the consumer if the the consumer group is\n # not yet subscribed to a partition.\n offsetResetPolicy: earliest\n # This setting is passed to the HPA definition that KEDA will create for a\n # given resource and holds the maximum number of replicas of the target resouce.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#maxreplicacount\n maxReplicas: 1\n # Minimum number of replicas KEDA will scale the resource down to.\n # https://keda.sh/docs/2.7/concepts/scaling-deployments/#minreplicacount\n minReplicas: 0\n # If this property is set, KEDA will scale the resource down to this\n # number of replicas.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#idlereplicacount\n idleReplicas: 0\n topics: # List of auto-generated Kafka Streams topics used by the streams app.\n - topic1\n - topic2\n
"}, {"location": "user/core-concepts/defaults/#producerapp", "title": "ProducerApp", "text": "defaults.yaml
\n
"}, {"location": "user/core-concepts/defaults/#kafkaconnector", "title": "KafkaConnector", "text": "defaults.yaml
# Kafka connector\n#\n# Parent of: KafkaSinkConnector, KafkaSourceConnector\n# Child of: PipelineComponent\nkafka-connector:\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example. Extensive documentation on\n # connectors: https://kafka.apache.org/documentation/#connectconfigs\n app: # required\n tasks.max: 1\n # Overriding Kafka Connect Resetter Helm values. E.g. to override the\n # Image Tag etc.\n resetter_values:\n imageTag: \"1.2.3\"\n
"}, {"location": "user/core-concepts/defaults/#kafkasourceconnector", "title": "KafkaSourceConnector", "text": "defaults.yaml
# Kafka source connector\n#\n# Child of: KafkaConnector\nkafka-source-connector:\n # The source connector has no `from` section\n # from:\n # offset.storage.topic\n # https://kafka.apache.org/documentation/#connect_running\n offset_topic: offset_topic\n
"}, {"location": "user/core-concepts/defaults/#kafkasinkconnector", "title": "KafkaSinkConnector", "text": "defaults.yaml
# Kafka sink connector\n#\n# Child of: KafkaConnector\nkafka-sink-connector:\n # No settings differ from `kafka-connector`\n
"}, {"location": "user/core-concepts/components/helm-app/", "title": "HelmApp", "text": ""}, {"location": "user/core-concepts/components/helm-app/#usage", "title": "Usage", "text": "Can be used to deploy any app in Kubernetes using Helm, for example, a REST service that serves Kafka data.
"}, {"location": "user/core-concepts/components/helm-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Kubernetes app managed through Helm with an associated Helm chart\n- type: helm-app\n name: helm-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example.\n app: # required\n image: exampleImage # Example\n debug: false # Example\n commandLine: {} # Example\n # Helm repository configuration (optional)\n # If not set the helm repo add will not be called. Useful when using local Helm charts\n repo_config:\n repository_name: bakdata-streams-bootstrap # required\n url: https://bakdata.github.io/streams-bootstrap/ # required\n repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"1.0.0\" # Helm chart version\n
"}, {"location": "user/core-concepts/components/helm-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/helm-app/#deploy", "title": "deploy", "text": "Deploy using Helm.
"}, {"location": "user/core-concepts/components/helm-app/#destroy", "title": "destroy", "text": "Uninstall Helm release.
"}, {"location": "user/core-concepts/components/helm-app/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/helm-app/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kafka-app/", "title": "KafkaApp", "text": "Subclass of HelmApp.
"}, {"location": "user/core-concepts/components/kafka-app/#usage", "title": "Usage", "text": "pipeline.yaml
as the component can be defined as either a StreamsApp or a ProducerAppdefaults.yaml
pipeline.yaml
# Base component for Kafka-based components.\n# Producer or streaming apps should inherit from this class.\n- type: kafka-app # required\n name: kafka-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` can contain application-specific settings, hence the user is free to\n # add the key-value pairs they need.\n app: # required\n streams: # required\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n nameOverride: override-with-this-name # kafka-app-specific\n imageTag: \"1.0.0\" # Example values that are shared between streams-app and producer-app\n
"}, {"location": "user/core-concepts/components/kafka-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kafka-app/#deploy", "title": "deploy", "text": "In addition to HelmApp's deploy
:
Uninstall Helm release.
"}, {"location": "user/core-concepts/components/kafka-app/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kafka-app/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kafka-connector/", "title": "KafkaConnector", "text": "KafkaConnector
is a component that deploys Kafka Connectors. Since a connector cannot be different from sink or source it is not recommended to use KafkaConnector
for deployment in pipeline.yaml
. Instead, KafkaConnector
should be used in defaults.yaml
to set defaults for all connectors in the pipeline as they can share some common settings.
Subclass of KafkaConnector.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#usage", "title": "Usage", "text": "Lets other systems pull data from Apache Kafka.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Kafka sink connector\n- type: kafka-sink-connector\n name: kafka-sink-connector # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example. Extensive documentation on\n # connectors: https://kafka.apache.org/documentation/#connectconfigs\n app: # required\n tasks.max: 1\n # Overriding Kafka Connect Resetter Helm values. E.g. to override the\n # Image Tag etc.\n resetter_values:\n imageTag: \"1.2.3\"\n
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kafka-sink-connector/#deploy", "title": "deploy", "text": "The associated sink connector is removed from the Kafka Connect cluster.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#reset", "title": "reset", "text": "Reset the consumer group offsets using bakdata's sink resetter.
"}, {"location": "user/core-concepts/components/kafka-sink-connector/#clean", "title": "clean", "text": "Subclass of KafkaConnector.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#usage", "title": "Usage", "text": "Manages source connectors in your Kafka Connect cluster.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Kafka source connector\n- type: kafka-source-connector # required\n name: kafka-source-connector # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n # The source connector has no `from` section\n # from:\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example. Extensive documentation on\n # connectors: https://kafka.apache.org/documentation/#connectconfigs\n app: # required\n tasks.max: 1\n # Overriding Kafka Connect Resetter Helm values. E.g. to override the\n # Image Tag etc.\n resetter_values:\n imageTag: \"1.2.3\"\n # offset.storage.topic\n # https://kafka.apache.org/documentation/#connect_running\n offset_topic: offset_topic\n
"}, {"location": "user/core-concepts/components/kafka-source-connector/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kafka-source-connector/#deploy", "title": "deploy", "text": "Remove the source connector from the Kafka Connect cluster.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#reset", "title": "reset", "text": "Delete state associated with the connector using bakdata's sink resetter.
"}, {"location": "user/core-concepts/components/kafka-source-connector/#clean", "title": "clean", "text": "Can be used to create components for any Kubernetes app.
"}, {"location": "user/core-concepts/components/kubernetes-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Base Kubernetes App\n- type: kubernetes-app\n name: kubernetes-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # `app` contains application-specific settings, hence it does not have a rigid\n # structure. The fields below are just an example.\n app: # required\n image: exampleImage # Example\n debug: false # Example\n commandLine: {} # Example\n
"}, {"location": "user/core-concepts/components/kubernetes-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/kubernetes-app/#deploy", "title": "deploy", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kubernetes-app/#destroy", "title": "destroy", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kubernetes-app/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/kubernetes-app/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/overview/", "title": "Overview", "text": "This section explains the different components of KPOps, their usage and configuration in the pipeline definition pipeline.yaml
.
flowchart BT\n KubernetesApp --> PipelineComponent\n KafkaApp --> PipelineComponent\n HelmApp --> KubernetesApp\n StreamsBootstrap --> HelmApp\n StreamsApp --> KafkaApp\n StreamsApp --> StreamsBootstrap\n ProducerApp --> KafkaApp\n ProducerApp --> StreamsBootstrap\n KafkaConnector --> PipelineComponent\n KafkaSourceConnector --> KafkaConnector\n KafkaSinkConnector --> KafkaConnector\n\n click KubernetesApp \"./../kubernetes-app\"\n click HelmApp \"./../helm-app\"\n click KafkaApp \"./../kafka-app\"\n click StreamsBootstrap \"./../streams-bootstrap\"\n click StreamsApp \"./../streams-app\"\n click ProducerApp \"./../producer-app\"\n click KafkaConnector \"./../kafka-connector\"\n click KafkaSourceConnector \"./../kafka-source-connector\"\n click KafkaSinkConnector \"./../kafka-sink-connector\"
KPOps component hierarchy
"}, {"location": "user/core-concepts/components/producer-app/", "title": "ProducerApp", "text": "Subclass of KafkaApp and StreamsBootstrap.
"}, {"location": "user/core-concepts/components/producer-app/#usage", "title": "Usage", "text": "Configures a streams-bootstrap Kafka producer app
"}, {"location": "user/core-concepts/components/producer-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# Holds configuration to use as values for the streams bootstrap producer-app Helm\n# chart.\n# More documentation on ProducerApp:\n# https://github.com/bakdata/streams-bootstrap\n- type: producer-app\n name: producer-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n # from: # While the producer-app does inherit from kafka-app, it does not need a\n # `from` section, hence it does not support it.\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # Allowed configs:\n # https://github.com/bakdata/streams-bootstrap/tree/master/charts/producer-app\n app: # required\n streams: # required, producer-app-specific\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n outputTopic: output_topic\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n nameOverride: override-with-this-name # kafka-app-specific\n # Helm repository configuration (optional)\n # If not set the helm repo add will not be called. Useful when using local Helm charts\n repo_config:\n repository_name: bakdata-streams-bootstrap # required\n url: https://bakdata.github.io/streams-bootstrap/ # required\n repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"2.12.0\" # Helm chart version\n
"}, {"location": "user/core-concepts/components/producer-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/producer-app/#deploy", "title": "deploy", "text": "In addition to KubernetesApp's deploy
:
Uninstall Helm release.
"}, {"location": "user/core-concepts/components/producer-app/#reset", "title": "reset", "text": "Do nothing, producers are stateless.
"}, {"location": "user/core-concepts/components/producer-app/#clean", "title": "clean", "text": "Subclass of KafkaApp and StreamsBootstrap.
"}, {"location": "user/core-concepts/components/streams-app/#usage", "title": "Usage", "text": "Configures a streams-bootstrap Kafka Streams app
"}, {"location": "user/core-concepts/components/streams-app/#configuration", "title": "Configuration", "text": "pipeline.yaml
# StreamsApp component that configures a streams bootstrap app.\n# More documentation on StreamsApp: https://github.com/bakdata/streams-bootstrap\n- type: streams-app # required\n name: streams-app # required\n # Pipeline prefix that will prefix every component name. If you wish to not\n # have any prefix you can specify an empty string.\n prefix: ${pipeline.name}-\n from: # Must not be null\n topics: # read from topic\n ${pipeline.name}-input-topic:\n type: input # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra\n ${pipeline.name}-input-pattern-topic:\n type: pattern # Implied to be an input pattern if `role` is undefined\n ${pipeline.name}-extra-pattern-topic:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n components: # read from specific component\n account-producer:\n type: input # Implied when role is NOT specified\n other-producer:\n role: some-role # Implies `type` to be extra\n component-as-input-pattern:\n type: pattern # Implied to be an input pattern if `role` is undefined\n component-as-extra-pattern:\n type: pattern # Implied to be an extra pattern if `role` is defined\n role: some-role\n # Topic(s) into which the component will write output\n to:\n topics:\n ${pipeline.name}-output-topic:\n type: output # Implied when role is NOT specified\n ${pipeline.name}-extra-topic:\n role: topic-role # Implies `type` to be extra; Will throw an error if `type` is defined\n ${pipeline.name}-error-topic:\n type: error\n # Currently KPOps supports Avro and JSON schemas.\n key_schema: key-schema # must implement SchemaProvider to use\n value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs: # https://kafka.apache.org/documentation/#topicconfigs\n cleanup.policy: compact\n models: # SchemaProvider is initiated with the values given here\n model: model\n namespace: namespace # required\n # No arbitrary keys are allowed under `app`here\n # Allowed configs:\n # https://github.com/bakdata/streams-bootstrap/tree/master/charts/streams-app\n app: # required\n # Streams Bootstrap streams section\n streams: # required, streams-app-specific\n brokers: ${config.kafka_brokers} # required\n schemaRegistryUrl: ${config.schema_registry.url}\n inputTopics:\n - topic1\n - topic2\n outputTopic: output-topic\n inputPattern: input-pattern\n extraInputTopics:\n input_role1:\n - input_topic1\n - input_topic2\n input_role2:\n - input_topic3\n - input_topic4\n extraInputPatterns:\n pattern_role1: input_pattern1\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n errorTopic: error-topic\n config:\n my.streams.config: my.value\n nameOverride: override-with-this-name # streams-app-specific\n autoscaling: # streams-app-specific\n consumerGroup: consumer-group # required\n lagThreshold: 0 # Average target value to trigger scaling actions.\n enabled: false # Whether to enable auto-scaling using KEDA.\n # This is the interval to check each trigger on.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#pollinginterval\n pollingInterval: 30\n # The period to wait after the last trigger reported active before scaling\n # the resource back to 0. https://keda.sh/docs/2.9/concepts/scaling-deployments/#cooldownperiod\n cooldownPeriod: 300\n # The offset reset policy for the consumer if the the consumer group is\n # not yet subscribed to a partition.\n offsetResetPolicy: earliest\n # This setting is passed to the HPA definition that KEDA will create for a\n # given resource and holds the maximum number of replicas of the target resouce.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#maxreplicacount\n maxReplicas: 1\n # Minimum number of replicas KEDA will scale the resource down to.\n # https://keda.sh/docs/2.7/concepts/scaling-deployments/#minreplicacount\n minReplicas: 0\n # If this property is set, KEDA will scale the resource down to this\n # number of replicas.\n # https://keda.sh/docs/2.9/concepts/scaling-deployments/#idlereplicacount\n idleReplicas: 0\n topics: # List of auto-generated Kafka Streams topics used by the streams app.\n - topic1\n - topic2\n # Helm repository configuration (optional)\n # If not set the helm repo add will not be called. Useful when using local Helm charts\n repo_config:\n repository_name: bakdata-streams-bootstrap # required\n url: https://bakdata.github.io/streams-bootstrap/ # required\n repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"2.12.0\" # Helm chart version\n
"}, {"location": "user/core-concepts/components/streams-app/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/streams-app/#deploy", "title": "deploy", "text": "In addition to KubernetesApp's deploy
:
Uninstall Helm release.
"}, {"location": "user/core-concepts/components/streams-app/#reset", "title": "reset", "text": "Similar to reset
with to additional steps:
Subclass of HelmApp.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#usage", "title": "Usage", "text": "Configures a Helm app with streams-bootstrap Helm charts.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#operations", "title": "Operations", "text": ""}, {"location": "user/core-concepts/components/streams-bootstrap/#deploy", "title": "deploy", "text": "Deploy using Helm.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#destroy", "title": "destroy", "text": "Uninstall Helm release.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#reset", "title": "reset", "text": "Do nothing.
"}, {"location": "user/core-concepts/components/streams-bootstrap/#clean", "title": "clean", "text": "Do nothing.
"}, {"location": "user/core-concepts/variables/environment_variables/", "title": "Environment variables", "text": "Environment variables can be set by using the export command in Linux or the set command in Windows.
dotenv files
KPOps currently supports .env
files only for variables related to the config. Full support for .env
files is on the roadmap. One of the possible ways to use one and export the contents manually is with the following command: export $(xargs < .env)
. This would work in bash
suppose there are no spaces inside the values.
These variables take precedence over the settings in config.yaml
. Variables marked as required can instead be set in the global config.
helm upgrade --install
. Create the release namespace if not present. create_namespace KPOPS_HELM_CONFIG__CONTEXT False Name of kubeconfig context (--kube-context
) helm_config.context KPOPS_HELM_CONFIG__DEBUG False False Run Helm in Debug mode helm_config.debug KPOPS_HELM_CONFIG__API_VERSION False Kubernetes API version used for Capabilities.APIVersions
helm_config.api_version KPOPS_HELM_DIFF_CONFIG__IGNORE True Set of keys that should not be checked. helm_diff_config.ignore KPOPS_RETAIN_CLEAN_JOBS False False Whether to retain clean up jobs in the cluster or uninstall the, after completion. retain_clean_jobs config_env_vars.env Exhaustive list of all config-related environment variables# Global config environment variables\n#\n# The default setup is shown. These variables take precedence over the\n# settings in `config.yaml`. Variables marked as required can instead\n# be set in the global config.\n#\n# components_module\n# Custom Python module defining project-specific KPOps components\nKPOPS_COMPONENTS_MODULE # No default value, not required\n# pipeline_base_dir\n# Base directory to the pipelines (default is current working\n# directory)\nKPOPS_PIPELINE_BASE_DIR=.\n# kafka_brokers\n# The comma separated Kafka brokers address.\nKPOPS_KAFKA_BROKERS # No default value, required\n# topic_name_config.default_output_topic_name\n# Configures the value for the variable ${output_topic_name}\nKPOPS_TOPIC_NAME_CONFIG__DEFAULT_OUTPUT_TOPIC_NAME=${pipeline.name}-${component.name}\n# topic_name_config.default_error_topic_name\n# Configures the value for the variable ${error_topic_name}\nKPOPS_TOPIC_NAME_CONFIG__DEFAULT_ERROR_TOPIC_NAME=${pipeline.name}-${component.name}-error\n# schema_registry.enabled\n# Whether the Schema Registry handler should be initialized.\nKPOPS_SCHEMA_REGISTRY__ENABLED=False\n# schema_registry.url\n# Address of the Schema Registry.\nKPOPS_SCHEMA_REGISTRY__URL=http://localhost:8081/\n# schema_registry.timeout\n# Operation timeout in seconds.\nKPOPS_SCHEMA_REGISTRY__TIMEOUT=30\n# kafka_rest.url\n# Address of the Kafka REST Proxy.\nKPOPS_KAFKA_REST__URL=http://localhost:8082/\n# kafka_rest.timeout\n# Operation timeout in seconds.\nKPOPS_KAFKA_REST__TIMEOUT=30\n# kafka_connect.url\n# Address of Kafka Connect.\nKPOPS_KAFKA_CONNECT__URL=http://localhost:8083/\n# kafka_connect.timeout\n# Operation timeout in seconds.\nKPOPS_KAFKA_CONNECT__TIMEOUT=30\n# create_namespace\n# Flag for `helm upgrade --install`. Create the release namespace if\n# not present.\nKPOPS_CREATE_NAMESPACE=False\n# helm_config.context\n# Name of kubeconfig context (`--kube-context`)\nKPOPS_HELM_CONFIG__CONTEXT # No default value, not required\n# helm_config.debug\n# Run Helm in Debug mode\nKPOPS_HELM_CONFIG__DEBUG=False\n# helm_config.api_version\n# Kubernetes API version used for `Capabilities.APIVersions`\nKPOPS_HELM_CONFIG__API_VERSION # No default value, not required\n# helm_diff_config.ignore\n# Set of keys that should not be checked.\nKPOPS_HELM_DIFF_CONFIG__IGNORE # No default value, required\n# retain_clean_jobs\n# Whether to retain clean up jobs in the cluster or uninstall the,\n# after completion.\nKPOPS_RETAIN_CLEAN_JOBS=False\n
"}, {"location": "user/core-concepts/variables/environment_variables/#cli", "title": "CLI", "text": "These variables take precedence over the commands' flags. If a variable is set, the corresponding flag does not have to be specified in commands. Variables marked as required can instead be set as flags.
Name Default Value Required Description KPOPS_CONFIG_PATH . False Path to the dir containing config.yaml files KPOPS_DOTENV_PATH False Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. KPOPS_ENVIRONMENT False The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). KPOPS_PIPELINE_PATHS True Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. KPOPS_PIPELINE_STEPS False Comma separated list of steps to apply the command on cli_env_vars.env Exhaustive list of all cli-related environment variables# CLI Environment variables\n#\n# The default setup is shown. These variables take precedence over the\n# commands' flags. If a variable is set, the corresponding flag does\n# not have to be specified in commands. Variables marked as required\n# can instead be set as flags.\n#\n# Path to the dir containing config.yaml files\nKPOPS_CONFIG_PATH=.\n# Path to dotenv file. Multiple files can be provided. The files will\n# be loaded in order, with each file overriding the previous one.\nKPOPS_DOTENV_PATH # No default value, not required\n# The environment you want to generate and deploy the pipeline to.\n# Suffix your environment files with this value (e.g.\n# defaults_development.yaml for environment=development).\nKPOPS_ENVIRONMENT # No default value, not required\n# Paths to dir containing 'pipeline.yaml' or files named\n# 'pipeline.yaml'.\nKPOPS_PIPELINE_PATHS # No default value, required\n# Comma separated list of steps to apply the command on\nKPOPS_PIPELINE_STEPS # No default value, not required\n
"}, {"location": "user/core-concepts/variables/substitution/", "title": "Substitution", "text": "KPOps supports the usage of placeholders and environment variables in pipeline definition and defaults.
"}, {"location": "user/core-concepts/variables/substitution/#component-specific-variables", "title": "Component-specific variables", "text": "These variables can be used in a component's definition to refer to any of its attributes, including ones that the user has defined in the defaults.
All of them are prefixed with component.
and follow the following form: component.{attribute_name}
. If the attribute itself contains attributes, they can be referred to like this: component.{attribute_name}.{subattribute_name}
.
- type: scheduled-producer\n app:\n labels:\n app_type: \"${component.type}\"\n app_name: \"${component.name}\"\n app_schedule: \"${component.app.schedule}\"\n commandLine:\n FAKE_ARG: \"fake-arg-value\"\n schedule: \"30 3/8 * * *\"\n- type: converter\n app:\n commandLine:\n CONVERT_XML: true\n resources:\n limits:\n memory: 2G\n requests:\n memory: 2G\n- type: filter\n name: \"filter-app\"\n app:\n labels:\n app_type: \"${component.type}\"\n app_name: \"${component.name}\"\n app_resources_requests_memory: \"${component.app.resources.requests.memory}\"\n ${component.type}: \"${component.app.labels.app_name}-${component.app.labels.app_type}\"\n test_placeholder_in_placeholder: \"${component.app.labels.${component.type}}\"\n commandLine:\n TYPE: \"nothing\"\n resources:\n requests:\n memory: 3G\n replicaCount: 4\n autoscaling:\n minReplicas: 4\n maxReplicas: 4\n
"}, {"location": "user/core-concepts/variables/substitution/#pipeline-config-specific-variables", "title": "Pipeline-config-specific variables", "text": "These variables include all fields in the config and refer to the pipeline configuration that is independent of the components.
All such variables are prefixed with config.
and are of the same form as the component-specific variables.
Info
error_topic_name
is an alias for config.topic_name_config.default_error_topic_name
output_topic_name
is an alias for config.topic_name_config.default_output_topic_name
Environment variables such as $PATH
can be used in the pipeline definition and defaults without any transformation following the form ${ENV_VAR_NAME}
. This, of course, includes variables like the ones relevant to the KPOps cli that are exported by the user.
See all KPOps environment variables
"}, {"location": "user/core-concepts/variables/substitution/#pipeline-name-variables", "title": "Pipeline name variables", "text": "These are special variables that refer to the name and path of a pipeline.
${pipeline.name}
: Concatenated path of the parent directory where pipeline.yaml is defined in. For instance, ./data/pipelines/v1/pipeline.yaml
, here the value for the variable would be data-pipelines-v1
.
${pipeline_name_<level>}
: Similar to the previous variable, each <level>
contains a part of the path to the pipeline.yaml
file. Consider the previous example, ${pipeline_name_0}
would be data
, ${pipeline_name_1}
would be pipelines
, and ${pipeline_name_2}
equals to v1
.
ATM fraud is a demo pipeline for ATM fraud detection. The original by Confluent is written in KSQL and outlined in this blogpost. The one used in this example is re-built from scratch using bakdata's streams-bootstrap
library.
Completed all steps in the setup.
"}, {"location": "user/examples/atm-fraud-pipeline/#setup-and-deployment", "title": "Setup and deployment", "text": ""}, {"location": "user/examples/atm-fraud-pipeline/#postgresql", "title": "PostgreSQL", "text": "Deploy PostgreSQL using the Bitnami Helm chart: Add the helm repository:
helm repo add bitnami https://charts.bitnami.com/bitnami && \\\nhelm repo update\n
Install the PostgreSQL with helm:
helm upgrade --install -f ./postgresql.yaml \\\n--namespace kpops \\\npostgresql bitnami/postgresql\n
PostgreSQL Example Helm chart values (postgresql.yaml
) auth:\n database: app_db\n enablePostgresUser: true\n password: AppPassword\n postgresPassword: StrongPassword\n username: app1\nprimary:\n persistence:\n enabled: false\n existingClaim: postgresql-data-claim\nvolumePermissions:\n enabled: true\n
"}, {"location": "user/examples/atm-fraud-pipeline/#atm-fraud-detection-example-pipeline-setup", "title": "ATM fraud detection example pipeline setup", "text": ""}, {"location": "user/examples/atm-fraud-pipeline/#port-forwarding", "title": "Port forwarding", "text": "Before we deploy the pipeline, we need to forward the ports of kafka-rest-proxy
and kafka-connect
. Run the following commands in two different terminals.
kubectl port-forward --namespace kpops service/k8kafka-cp-rest 8082:8082\n
kubectl port-forward --namespace kpops service/k8kafka-cp-kafka-connect 8083:8083\n
"}, {"location": "user/examples/atm-fraud-pipeline/#deploying-the-atm-fraud-detection-pipeline", "title": "Deploying the ATM fraud detection pipeline", "text": "Clone the kpops-examples repository and cd
into the directory.
Install KPOps pip install -r requirements.txt
.
Export environment variables in your terminal:
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Deploy the pipeline
kpops deploy atm-fraud/pipeline.yaml --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be deployed correctly.
You can use the Streams Explorer to see the deployed pipeline. To do so, port-forward the service in a separate terminal session using the command below:
kubectl port-forward -n kpops service/streams-explorer 8080:8080\n
After that open http://localhost:8080 in your browser. You should be able to see pipeline shown in the image below:
An overview of ATM fraud pipeline shown in Streams Explorer
Attention
Kafka Connect needs some time to set up the connector. Moreover, Streams Explorer needs a while to scrape the information from Kafka connect. Therefore, it might take a bit until you see the whole graph.
"}, {"location": "user/examples/atm-fraud-pipeline/#teardown-resources", "title": "Teardown resources", "text": ""}, {"location": "user/examples/atm-fraud-pipeline/#postrgresql", "title": "PostrgreSQL", "text": "PostgreSQL can be uninstalled by running the following command:
helm --namespace kpops uninstall postgresql\n
"}, {"location": "user/examples/atm-fraud-pipeline/#atm-fraud-pipeline", "title": "ATM fraud pipeline", "text": "Export environment variables in your terminal.
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Remove the pipeline
kpops clean atm-fraud/pipeline.yaml --verbose --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be destroyed correctly.
Attention
If you face any issues destroying this example see Teardown for manual deletion.
"}, {"location": "user/examples/atm-fraud-pipeline/#common-errors", "title": "Common errors", "text": "deploy
fails:clean
.deploy --dry-run
to avoid havig to clean
again. If an error is dropped, start over from step 1.deploy
.clean
fails:clean
.clean
fails, follow the steps in teardown.Word-count is a demo pipeline consisting of a producer producing words to Kafka, a Kafka streams app counting the number of times each word occurs, and finally a Redis database into which the words are exported.
"}, {"location": "user/getting-started/quick-start/#what-this-will-demonstrate", "title": "What this will demonstrate", "text": "Completed all steps in the setup.
"}, {"location": "user/getting-started/quick-start/#setup-and-deployment", "title": "Setup and deployment", "text": ""}, {"location": "user/getting-started/quick-start/#redis", "title": "Redis", "text": "Deploy Redis using the Bitnami Helm chart: Add the Helm repository:
helm repo add bitnami https://charts.bitnami.com/bitnami && \\\nhelm repo update\n
Install Redis with Helm:
helm upgrade --install -f ./values-redis.yaml \\\n--namespace kpops \\\nredis bitnami/redis\n
Redis example Helm chart values (values-redis.yaml
) architecture: standalone\nauth:\n enabled: false\nmaster:\n count: 1\n configuration: \"databases 1\"\nimage:\n tag: 7.0.8\n
"}, {"location": "user/getting-started/quick-start/#word-count-example-pipeline-setup", "title": "Word-count example pipeline setup", "text": ""}, {"location": "user/getting-started/quick-start/#port-forwarding", "title": "Port forwarding", "text": "Before we deploy the pipeline, we need to forward the ports of kafka-rest-proxy
and kafka-connect
. Run the following commands in two different terminals.
kubectl port-forward --namespace kpops service/k8kafka-cp-rest 8082:8082\n
kubectl port-forward --namespace kpops service/k8kafka-cp-kafka-connect 8083:8083\n
"}, {"location": "user/getting-started/quick-start/#deploying-the-word-count-pipeline", "title": "Deploying the Word-count pipeline", "text": "Clone the kpops-examples repository and cd
into the directory.
Install KPOps pip install -r requirements.txt
.
Export environment variables in your terminal:
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Deploy the pipeline
kpops deploy word-count/pipeline.yaml --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be deployed correctly.
You can use the Streams Explorer to inspect the deployed pipeline. To do so, port-forward the service in a separate terminal session using the command below:
kubectl port-forward -n kpops service/streams-explorer 8080:8080\n
After that open http://localhost:8080 in your browser.
You should be able to see pipeline shown in the image below:
An overview of Word-count pipeline shown in Streams Explorer
Attention
Kafka Connect needs some time to set up the connector. Moreover, Streams Explorer needs a while to scrape the information from Kafka Connect. Therefore, it might take a bit until you see the whole graph.
"}, {"location": "user/getting-started/quick-start/#teardown-resources", "title": "Teardown resources", "text": ""}, {"location": "user/getting-started/quick-start/#redis_1", "title": "Redis", "text": "Redis can be uninstalled by running the following command:
helm --namespace kpops uninstall redis\n
"}, {"location": "user/getting-started/quick-start/#word-count-pipeline", "title": "Word-count pipeline", "text": "Export environment variables in your terminal.
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Remove the pipeline
kpops clean word-count/pipeline.yaml --verbose --execute\n
Note
You can use the --dry-run
flag instead of the --execute
flag and check the logs if your pipeline will be destroyed correctly.
Attention
If you face any issues destroying this example see Teardown for manual deletion.
"}, {"location": "user/getting-started/quick-start/#common-errors", "title": "Common errors", "text": "deploy
fails:clean
.deploy --dry-run
to avoid having to clean
again. If an error is dropped, start over from step 1.deploy
.clean
fails:clean
.clean
fails, follow the steps in teardown.In this part, you will set up KPOps. This includes:
If you don't have access to an existing Kubernetes cluster, this section will guide you through creating a local cluster. We recommend the lightweight Kubernetes distribution k3s for this. k3d is a wrapper around k3s in Docker that lets you get started fast.
You can install k3d with its installation script:
wget -q -O - https://raw.githubusercontent.com/k3d-io/k3d/v5.4.6/install.sh | bash\n
For other ways of installing k3d, you can have a look at their installation guide.
The Kafka deployment needs a modified Docker image. In that case the image is built and pushed to a Docker registry that holds it. If you do not have access to an existing Docker registry, you can use k3d's Docker registry:
k3d registry create kpops-registry.localhost --port 12345\n
Now you can create a new cluster called kpops
that uses the previously created Docker registry:
k3d cluster create kpops --k3s-arg \"--no-deploy=traefik@server:*\" --registry-use k3d-kpops-registry.localhost:12345\n
Note
Creating a new k3d cluster automatically configures kubectl
to connect to the local cluster by modifying your ~/.kube/config
. In case you manually set the KUBECONFIG
variable or don't want k3d to modify your config, k3d offers many other options.
You can check the cluster status with kubectl get pods -n kube-system
. If all returned elements have a STATUS
of Running
or Completed
, then the cluster is up and running.
Kafka is an open-source data streaming platform. More information about Kafka can be found in the documentation. To deploy Kafka, this guide uses Confluent's Helm chart.
To allow connectivity to other systems Kafka Connect needs to be extended with drivers. You can install a JDBC driver for Kafka Connect by creating a new Docker image:
Create a Dockerfile
with the following content:
FROM confluentinc/cp-kafka-connect:7.1.3\n\nRUN confluent-hub install --no-prompt confluentinc/kafka-connect-jdbc:10.6.0\n
Build and push the modified image to your private Docker registry:
docker build . --tag localhost:12345/kafka-connect-jdbc:7.1.3 && \\\ndocker push localhost:12345/kafka-connect-jdbc:7.1.3\n
Detailed instructions on building, tagging and pushing a docker image can be found in Docker docs.
Add Confluent's Helm chart repository and update the index:
helm repo add confluentinc https://confluentinc.github.io/cp-helm-charts/ && \nhelm repo update\n
Install Kafka, Zookeeper, Confluent's Schema Registry, Kafka Rest Proxy, and Kafka Connect. A single Helm chart installs all five components. Below you can find an example for the --values ./kafka.yaml
file configuring the deployment accordingly. Deploy the services:
helm upgrade \\\n --install \\\n --version 0.6.1 \\\n --values ./kafka.yaml \\\n --namespace kpops \\\n --create-namespace \\\n --wait \\\n k8kafka confluentinc/cp-helm-charts\n
kafka.yaml
) An example value configuration for Confluent's Helm chart. This configuration deploys a single Kafka Broker, a Schema Registry, Zookeeper, Kafka Rest Proxy, and Kafka Connect with minimal resources.
cp-zookeeper:\n enabled: true\n servers: 1\n imageTag: 7.1.3\n heapOptions: \"-Xms124M -Xmx124M\"\n overrideGroupId: k8kafka\n fullnameOverride: \"k8kafka-cp-zookeeper\"\n resources:\n requests:\n cpu: 50m\n memory: 0.2G\n limits:\n cpu: 250m\n memory: 0.2G\n prometheus:\n jmx:\n enabled: false\n\ncp-kafka:\n enabled: true\n brokers: 1\n imageTag: 7.1.3\n podManagementPolicy: Parallel\n configurationOverrides:\n \"auto.create.topics.enable\": false\n \"offsets.topic.replication.factor\": 1\n \"transaction.state.log.replication.factor\": 1\n \"transaction.state.log.min.isr\": 1\n \"confluent.metrics.reporter.topic.replicas\": 1\n resources:\n requests:\n cpu: 50m\n memory: 0.5G\n limits:\n cpu: 250m\n memory: 0.5G\n prometheus:\n jmx:\n enabled: false\n persistence:\n enabled: false\n\ncp-schema-registry:\n enabled: true\n imageTag: 7.1.3\n fullnameOverride: \"k8kafka-cp-schema-registry\"\n overrideGroupId: k8kafka\n kafka:\n bootstrapServers: \"PLAINTEXT://k8kafka-cp-kafka-headless:9092\"\n resources:\n requests:\n cpu: 50m\n memory: 0.25G\n limits:\n cpu: 250m\n memory: 0.25G\n prometheus:\n jmx:\n enabled: false\n\ncp-kafka-connect:\n enabled: true\n replicaCount: 1\n image: k3d-kpops-registry.localhost:12345/kafka-connect-jdbc\n imageTag: 7.1.3\n fullnameOverride: \"k8kafka-cp-kafka-connect\"\n overrideGroupId: k8kafka\n kafka:\n bootstrapServers: \"PLAINTEXT://k8kafka-cp-kafka-headless:9092\"\n heapOptions: \"-Xms256M -Xmx256M\"\n resources:\n requests:\n cpu: 500m\n memory: 0.25G\n limits:\n cpu: 500m\n memory: 0.25G\n configurationOverrides:\n \"consumer.max.poll.records\": \"10\"\n \"consumer.max.poll.interval.ms\": \"900000\"\n \"config.storage.replication.factor\": \"1\"\n \"offset.storage.replication.factor\": \"1\"\n \"status.storage.replication.factor\": \"1\"\n cp-schema-registry:\n url: http://k8kafka-cp-schema-registry:8081\n prometheus:\n jmx:\n enabled: false\n\ncp-kafka-rest:\n enabled: true\n imageTag: 7.1.3\n fullnameOverride: \"k8kafka-cp-rest\"\n heapOptions: \"-Xms256M -Xmx256M\"\n resources:\n requests:\n cpu: 50m\n memory: 0.25G\n limits:\n cpu: 250m\n memory: 0.5G\n prometheus:\n jmx:\n enabled: false\n\ncp-ksql-server:\n enabled: false\ncp-control-center:\n enabled: false\n
"}, {"location": "user/getting-started/setup/#deploy-streams-explorer", "title": "Deploy Streams Explorer", "text": "Streams Explorer allows examining Apache Kafka data pipelines in a Kubernetes cluster including the inspection of schemas and monitoring of metrics. First, add the Helm repository:
helm repo add streams-explorer https://bakdata.github.io/streams-explorer && \\\nhelm repo update\n
Below you can find an example for the --values ./streams-explorer.yaml
file configuring the deployment accordingly. Now, deploy the service:
helm upgrade \\\n --install \\\n --version 0.2.3 \\\n --values ./streams-explorer.yaml \\\n --namespace kpops \\\n streams-explorer streams-explorer/streams-explorer\n
Streams Explorer Helm chart values (streams-explorer.yaml
) An example value configuration for Steams Explorer Helm chart.
imageTag: \"v2.1.2\"\nconfig:\n K8S__deployment__cluster: true\n SCHEMAREGISTRY__url: http://k8kafka-cp-schema-registry.kpops.svc.cluster.local:8081\n KAFKACONNECT__url: http://k8kafka-cp-kafka-connect.kpops.svc.cluster.local:8083\nresources:\n requests:\n cpu: 200m\n memory: 300Mi\n limits:\n cpu: 200m\n memory: 300Mi\n
"}, {"location": "user/getting-started/setup/#check-the-status-of-your-deployments", "title": "Check the status of your deployments", "text": "Now we will check if all the pods are running in our namespace. You can list all pods in the namespace with this command:
kubectl --namespace kpops get pods\n
Then you should see the following output in your terminal:
NAME READY STATUS RESTARTS AGE\nk8kafka-cp-kafka-connect-8fc7d544f-8pjnt 1/1 Running 0 15m\nk8kafka-cp-zookeeper-0 1/1 Running 0 15m\nk8kafka-cp-kafka-0 1/1 Running 0 15m\nk8kafka-cp-schema-registry-588f8c65db-jdwbq 1/1 Running 0 15m\nk8kafka-cp-rest-6bbfd7b645-nwkf8 1/1 Running 0 15m\nstreams-explorer-54db878c67-s8wbz 1/1 Running 0 15m\n
Pay attention to the STATUS
row. The pods should have a status of Running
.
KPOps comes as a PyPI package. You can install it with pip
:
pip install kpops\n
"}, {"location": "user/getting-started/teardown/", "title": "Teardown resources", "text": ""}, {"location": "user/getting-started/teardown/#kpops-teardown-commands", "title": "KPOps teardown commands", "text": "destroy
: Removes Kubernetes resources.reset
: Runs destroy
, resets the states of Kafka Streams apps and resets offsets to zero.clean
: Runs reset
and removes all Kafka resources.The kpops
CLI can be used to destroy a pipeline that was previously deployed with KPOps. In case that doesn't work, the pipeline can always be taken down manually with helm
(see section Infrastructure).
Export environment variables.
export DOCKER_REGISTRY=bakdata && \\\nexport NAMESPACE=kpops\n
Navigate to the examples
folder. Replace the <name-of-the-example-directory>
with the example you want to tear down. For example the atm-fraud-detection
.
Remove the pipeline
# Uncomment 1 line to either destroy, reset or clean.\n\n# poetry run kpops destroy <name-of-the-example-directory>/pipeline.yaml \\\n# poetry run kpops reset <name-of-the-example-directory>/pipeline.yaml \\\n# poetry run kpops clean <name-of-the-example-directory>/pipeline.yaml \\\n--config <name-of-the-example-directory>/config.yaml \\\n--execute\n
Delete namespace:
kubectl delete namespace kpops\n
Note
In case kpops destroy
is not working one can uninstall the pipeline services one by one. This is equivalent to running kpops destroy
. In case a clean uninstall (like the one kpops clean
does) is needed, one needs to also delete the topics and schemas created by deployment of the pipeline.
Delete local cluster:
k3d cluster delete kpops\n
"}, {"location": "user/getting-started/teardown/#local-image-registry", "title": "Local image registry", "text": "Delete local registry:
k3d registry delete k3d-kpops-registry.localhost\n
"}, {"location": "user/migration-guide/v1-v2/", "title": "Migrate from V1 to V2", "text": ""}, {"location": "user/migration-guide/v1-v2/#derive-component-type-automatically-from-class-name", "title": "Derive component type automatically from class name", "text": "KPOps automatically infers the component type
from the class name. Therefore, the type
and schema_type
attributes can be removed from your custom components. By convention the type
would be the lower, and kebab cased name of the class.
class MyCoolStreamApp(StreamsApp):\n- type = \"my-cool-stream-app\"\n+ ...\n
Because of this new convention producer
has been renamed to producer-app
. This must be addressed in your pipeline.yaml
and defaults.yaml
.
- producer:\n+ producer-app:\n app:\n streams:\n outputTopic: output_topic\n extraOutputTopics:\n output_role1: output_topic1\n output_role2: output_topic2\n
"}, {"location": "user/migration-guide/v1-v2/#refactor-inputoutput-types", "title": "Refactor input/output types", "text": ""}, {"location": "user/migration-guide/v1-v2/#to-section", "title": "To section", "text": "In the to
section these have changed:
output
role
is set, type is inferred to be extra
error
needs to be defined explicitly to:\n topics:\n ${pipeline_name}-topic-1:\n- type: extra\n role: \"role-1\"\n ...\n ${pipeline_name}-topic-2:\n- type: output\n ...\n ${pipeline_name}-topic-3:\n type: error\n ...\n
"}, {"location": "user/migration-guide/v1-v2/#from-section", "title": "From section", "text": "In the from
section these have changed:
input
input-pattern
type is replaced by pattern
role
is set, type is inferred to be extra
role
is set, type is explicitly set to pattern
, this would be inferred type extra-pattern
from:\n topics:\n ${pipeline_name}-input-topic:\n- type: input\n ...\n ${pipeline_name}-extra-topic:\n- type: extra\n role: topic-role\n ...\n ${pipeline_name}-input-pattern-topic:\n- type: input-pattern\n+ type: pattern\n ...\n ${pipeline_name}-extra-pattern-topic:\n- type: extra-pattern\n+ type: pattern\n role: some-role\n ...\n
"}, {"location": "user/migration-guide/v1-v2/#remove-camel-case-conversion-of-internal-models", "title": "Remove camel case conversion of internal models", "text": "All the internal KPOps models are now snake_case, and only Helm/Kubernetes values require camel casing. You can find an example of a pipeline.yaml
in the following. Notice that the app
section here remains untouched.
...\ntype: streams-app\n name: streams-app\n namespace: namespace\n app:\n streams:\n brokers: ${brokers}\n schemaRegistryUrl: ${schema_registry_url}\n autoscaling:\n consumerGroup: consumer-group\n lagThreshold: 0\n enabled: false\n pollingInterval: 30\n\n to:\n topics:\n ${pipeline_name}-output-topic:\n type: error\n- keySchema: key-schema\n+ key_schema: key-schema\n- valueSchema: value-schema\n+ value_schema: value-schema\n partitions_count: 1\n replication_factor: 1\n configs:\n cleanup.policy: compact\n models:\n model: model\n prefix: ${pipeline_name}-\n- repoConfig:\n+ repo_config:\n- repositoryName: bakdata-streams-bootstrap\n+ repository_name: bakdata-streams-bootstrap\n url: https://bakdata.github.io/streams-bootstrap/\n- repoAuthFlags:\n+ repo_auth_flags:\n username: user\n password: pass\n ca_file: /home/user/path/to/ca-file\n insecure_skip_tls_verify: false\n version: \"1.0.4\"\n...\n
"}, {"location": "user/migration-guide/v1-v2/#refactor-handling-of-helm-flags", "title": "Refactor handling of Helm flags", "text": "If you are using the KubernetesApp
class to define your own Kubernetes resource to deploy, the abstract function get_helm_chart
that returns the chart for deploying the app using Helm is now a Python property and renamed to helm_chart
.
class MyCoolApp(KubernetesApp):\n\n+ @property\n @override\n- def get_helm_chart(self) -> str:\n+ def helm_chart(self) -> str:\n return \"./charts/charts-folder\"\n
"}, {"location": "user/migration-guide/v1-v2/#plural-broker-field-in-pipeline-config", "title": "Plural broker field in pipeline config", "text": "Since you can pass a comma separated string of broker address, the broker field in KPOps is now plural. The pluralization has affected multiple areas:
"}, {"location": "user/migration-guide/v1-v2/#configyaml", "title": "config.yaml", "text": " environment: development\n- broker: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n+ brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n kafka_connect_host: \"http://localhost:8083\"\n kafka_rest_host: \"http://localhost:8082\"\n schema_registry_url: \"http://localhost:8081\"\n
"}, {"location": "user/migration-guide/v1-v2/#pipelineyaml-and-defaultyaml", "title": "pipeline.yaml and default.yaml", "text": "The variable is now called brokers
.
...\n app:\n streams:\n- brokers: ${broker}\n+ brokers: ${brokers}\n schemaRegistryUrl: ${schema_registry_url}\n nameOverride: override-with-this-name\n imageTag: \"1.0.0\"\n...\n
"}, {"location": "user/migration-guide/v1-v2/#environment-variable", "title": "Environment variable", "text": "Previously, if you set the environment variable KPOPS_KAFKA_BROKER
, you need to replace that now with KPOPS_KAFKA_BROKERS
.
Jump to the summary
"}, {"location": "user/migration-guide/v2-v3/#use-hash-and-trim-long-helm-release-names-instead-of-only-trimming", "title": "Use hash and trim long Helm release names instead of only trimming", "text": "KPOps handles long (more than 53 characters) Helm releases names differently. Helm will not find your (long) old release names anymore. Therefore, it is recommended that you should once destroy your pipeline with KPOps v2 to remove old Helm release names. After a clean destroy, re-deploy your pipeline with the KPOps v3.
For example if you have a component with the Helm release name example-component-name-too-long-fake-fakefakefakefakefake
. The new release name will shorten the original name to 53 characters and then replace the last 6 characters of the trimmed name with the first 5 characters of the result of SHA-1(helm_release_name).
example-component-name-too-long-fake-fakefakef-0a7fc ----> 53 chars\n---------------------------------------------- -----\n ^Shortened helm_release_name ^first 5 characters of SHA1(helm_release_name)\n
"}, {"location": "user/migration-guide/v2-v3/#create-helmapp-component", "title": "Create HelmApp component", "text": "All Helm-specific parts of the built-in KubernetesApp
have been extracted to a new child component that is more appropriately named HelmApp
. It has to be renamed in your existing pipeline defintions and custom components module.
-- type: kubernetes-app\n+- type: helm-app\n name: foo\n
"}, {"location": "user/migration-guide/v2-v3/#custom_modulepy", "title": "custom_module.py", "text": "- from kpops.components import KubernetesApp\n+ from kpops.components import HelmApp\n\n\n- class CustomHelmApp(KubernetesApp):\n+ class CustomHelmApp(HelmApp):\n ...\n
"}, {"location": "user/migration-guide/v2-v3/#create-streamsbootstrap-component-refactor-cleanup-jobs-as-individual-helmapp", "title": "Create StreamsBootstrap component & refactor cleanup jobs as individual HelmApp", "text": "Previously the default KafkaApp
component configured the streams-bootstrap Helm Charts. Now, this component is no longer tied to Helm (or Kubernetes). Instead, there is a new StreamsBootstrap
component that configures the Helm Chart repository for the components that use it, e.g. StreamsApp
and ProducerApp
. If you are using non-default values for the Helm Chart repository or version, it has to be updated as shown below.
kafka-app:\n app:\n streams: ...\n\n+ streams-bootstrap:\n repo_config: ...\n version: ...\n
"}, {"location": "user/migration-guide/v2-v3/#refactor-kafka-connector-resetter-as-individual-helmapp", "title": "Refactor Kafka Connector resetter as individual HelmApp", "text": "Internally, the Kafka Connector resetter is now its own standard HelmApp
, removing a lot of the shared code. It is configured using the resetter_namespace
(formerly namespace
) and resetter_values
attributes.
kafka-connector:\n- namespace: my-namespace\n+ resetter_namespace: my-namespace\n
"}, {"location": "user/migration-guide/v2-v3/#make-kafka-rest-proxy-kafka-connect-hosts-default-and-improve-schema-registry-config", "title": "Make Kafka REST Proxy & Kafka Connect hosts default and improve Schema Registry config", "text": "The breaking changes target the config.yaml
file:
The schema_registry_url
is replaced with schema_registry.url
(default http://localhost:8081
) and schema_registry.enabled
(default false
).
kafka_rest_host
is renamed to kafka_rest.url
(default http://localhost:8082
).
kafka_connect_host
is replaced with kafka_connect.url
(default http://localhost:8083
).
brokers
is renamed to kafka_brokers
.
The environment variable names of these config fields changed respectively. Please refer to the environment variables documentation page to see the newest changes.
"}, {"location": "user/migration-guide/v2-v3/#configyaml", "title": "config.yaml", "text": " environment: development\n- brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n- kafka_rest_host: \"http://my-custom-rest.url:8082\"\n- kafka_connect_host: \"http://my-custom-connect.url:8083\"\n- schema_registry_url: \"http://my-custom-sr.url:8081\"\n+ kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n+ kafka_rest:\n+ url: \"http://my-custom-rest.url:8082\"\n+ kafka_connect:\n+ url: \"http://my-custom-connect.url:8083\"\n+ schema_registry:\n+ enabled: true\n+ url: \"http://my-custom-sr.url:8081\"\n
"}, {"location": "user/migration-guide/v2-v3/#pipelineyaml-and-defaultyaml", "title": "pipeline.yaml and default.yaml", "text": "The variable is now called kafka_brokers
.
...\n app:\n streams:\n- brokers: ${brokers}\n+ brokers: ${kafka_brokers}\n schemaRegistryUrl: ${schema_registry_url}\n nameOverride: override-with-this-name\n imageTag: \"1.0.0\"\n...\n
"}, {"location": "user/migration-guide/v2-v3/#define-custom-components-module-pipeline-base-dir-globally", "title": "Define custom components module & pipeline base dir globally", "text": "Warning
The previous CLI parameters have been removed.
The options for a custom components_module
and pipeline_base_dir
are now global settings, defined in config.yaml
.
kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n environment: development\n+ components_module: components\n+ pipeline_base_dir: pipelines\n
"}, {"location": "user/migration-guide/v2-v3/#move-github-action-to-repsitory-root", "title": "Move GitHub action to repsitory root", "text": "The location of the GitHub action has changed, and it's now available directly as bakdata/kpops
.
You'll need to change it in your GitHub CI workflows.
steps:\n - name: kpops deploy\n- uses: bakdata/kpops/actions/kpops-runner@main\n+ uses: bakdata/kpops@main\n with:\n command: deploy --execute\n # ...\n
"}, {"location": "user/migration-guide/v2-v3/#allow-overriding-config-files", "title": "Allow overriding config files", "text": "Specifying the environment is no longer mandatory. If not defined, only the global files will be used.
environment
is no longer specified in config.yaml
. Instead, it can be either set via the CLI flag --environment
or with the environment variable KPOPS_ENVIRONMENT
.
The --config
flag in the CLI now points to the directory that contains config*.yaml
files. The files to be used are resolved based on the provided (or not) environment
.
- environment: development\n kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n schema_registry:\n enabled: true\n url: \"http://my-custom-sr.url:8081\"\n
"}, {"location": "user/migration-guide/v2-v3/#change-substitution-variables-separator-to", "title": "Change substitution variables separator to .
", "text": "The delimiter in the substitution variables is changed to .
.
steps:\n - type: scheduled-producer\n app:\n labels:\n- app_type: \"${component_type}\"\n- app_name: \"${component_name}\"\n- app_schedule: \"${component_app_schedule}\"\n+ app_type: \"${component.type}\"\n+ app_name: \"${component.name}\"\n+ app_schedule: \"${component.app.schedule}\"\n
"}, {"location": "user/migration-guide/v2-v3/#configyaml_3", "title": "config.yaml", "text": "topic_name_config:\n- default_error_topic_name: \"${pipeline_name}-${component_name}-dead-letter-topic\"\n- default_output_topic_name: \"${pipeline_name}-${component_name}-topic\"\n+ default_error_topic_name: \"${pipeline_name}-${component.name}-dead-letter-topic\"\n+ default_output_topic_name: \"${pipeline_name}-${component.name}-topic\"\n
"}, {"location": "user/migration-guide/v2-v3/#refactor-generate-template-for-python-api-usage", "title": "Refactor generate template for Python API usage", "text": "The template
method of every pipeline component has been renamed to manifest
as it is no longer strictly tied to Helm template. Instead, it can be used to render the final resources of a component, such as Kubernetes manifests.
There is also a new kpops manifest
command replacing the existing kpops generate --template
flag.
If you're using this functionality in your custom components, it needs to be updated.
from kpops.components.base_components.models.resource import Resource\n\n @override\n- def template(self) -> None:\n+ def manifest(self) -> Resource:\n \"\"\"Render final component resources, e.g. Kubernetes manifests.\"\"\"\n return [] # list of manifests\n
"}, {"location": "user/migration-guide/v2-v3/#namespace-substitution-vars", "title": "Namespace substitution vars", "text": "The global configuration variables are now namespaced under the config key, such as ${config.kafka_brokers}
, ${config.schema_registry.url}
. Same with pipeline variables, e.g. ${pipeline_name} \u2192 ${pipeline.name}
. This would make it more uniform with the existing ${component.<key>}
variables.
name: kafka-app\n- prefix: ${pipeline_name}-\n+ prefix: ${pipeline.name}-\n app:\n streams:\n- brokers: ${kafka_brokers}\n- schemaRegistryUrl: ${schema_registry.url}\n+ brokers: ${config.kafka_brokers}\n+ schemaRegistryUrl: ${config.schema_registry.url}\n
"}, {"location": "user/migration-guide/v2-v3/#summary", "title": "Summary", "text": "Warning
Helm will not find your (long) old release names anymore.
defaults.yaml kafka-app:\n app:\n streams: ...\n\n+ streams-bootstrap:\n repo_config: ...\n version: ...\n
pipeline.yaml - - type: kubernetes-app\n+ - type: helm-app\n ...\n - type: kafka-app\n app:\n- brokers: ${brokers}\n+ brokers: ${config.kafka_brokers}\n labels:\n- app_schedule: \"${component_app_schedule}\"\n+ app_schedule: \"${component.app.schedule}\"\n ...\n - type: kafka-connector\n- namespace: my-namespace\n+ resetter_namespace: my-namespace\n ...\n
config.yaml - environment: development\n\n+ components_module: components\n\n+ pipeline_base_dir: pipelines\n\n- brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n+ kafka_brokers: \"http://k8kafka-cp-kafka-headless.kpops.svc.cluster.local:9092\"\n\n- kafka_rest_host: \"http://my-custom-rest.url:8082\"\n+ kafka_rest:\n+ url: \"http://my-custom-rest.url:8082\"\n\n- kafka_connect_host: \"http://my-custom-connect.url:8083\"\n+ kafka_connect:\n+ url: \"http://my-custom-connect.url:8083\"\n\n- schema_registry_url: \"http://my-custom-sr.url:8081\"\n+ schema_registry:\n+ enabled: true\n+ url: \"http://my-custom-sr.url:8081\"\n\n topic_name_config:\n- default_error_topic_name: \"${pipeline_name}-${component_name}-dead-letter-topic\"\n+ default_error_topic_name: \"${pipeline.name}-${component.name}-dead-letter-topic\"\n ...\n
custom_module.py - from kpops.components import KubernetesApp\n+ from kpops.components import HelmApp\n+ from kpops.components.base_components.models.resource import Resource\n\n- class CustomHelmApp(KubernetesApp):\n+ class CustomHelmApp(HelmApp):\n\n @override\n- def template(self) -> None:\n+ def manifest(self) -> Resource:\n \"\"\"Render final component resources, e.g. Kubernetes manifests.\"\"\"\n return [] # list of manifests\n ...\n
github_ci_workflow.yaml steps:\n - name: ...\n- uses: bakdata/kpops/actions/kpops-runner@main\n+ uses: bakdata/kpops@main\n ...\n
"}, {"location": "user/migration-guide/v3-v4/", "title": "Migrate from V3 to V4", "text": ""}, {"location": "user/migration-guide/v3-v4/#distribute-defaults-across-multiple-files", "title": "Distribute defaults across multiple files", "text": "Warning
The --defaults
flag is removed
It is possible now to use multiple default values. The defaults.yaml
(or defaults_<env>.yaml
) files can be distributed across multiple files. These will be picked up by KPOps and get merged into a single pipeline.yaml
file. KPOps starts from reading the default files from where the pipeline path is defined and picks up every defaults file on its way to where the pipeline_base_dir
is defined.
For example, imagine the following folder structure:
\u2514\u2500 pipelines\n \u2514\u2500\u2500 distributed-defaults\n \u251c\u2500\u2500 defaults.yaml\n \u251c\u2500\u2500 defaults_dev.yaml\n \u2514\u2500\u2500 pipeline-deep\n \u251c\u2500\u2500 defaults.yaml\n \u2514\u2500\u2500 pipeline.yaml\n
The pipeline_base_dir
is configured to pipelines
. Now if we generate this pipeline with the following command:
kpops generate \\\n --environment dev\n ./pipelines/distributed-defaults/pipeline-deep/pipeline.yaml\n
The defaults would be picked in the following order (high to low priority):
./pipelines/distributed-defaults/pipeline-deep/defaults.yaml
./pipelines/distributed-defaults/defaults_dev.yaml
./pipelines/distributed-defaults/defaults.yaml
The deepest defaults.yaml
file in the folder hierarchy (i.e., the closest one to the pipeline.yaml
) overwrites the higher-level defaults' values.
The global timeout
setting has been removed. Instead, an individual timeout can be set for each external service. The default is 30 seconds.
- timeout: 300\n\n kafka_rest:\n url: \"http://my-custom-rest.url:8082\"\n+ timeout: 30\n kafka_connect:\n url: \"http://my-custom-connect.url:8083\"\n+ timeout: 30\n schema_registry:\n enabled: true\n url: \"http://my-custom-sr.url:8081\"\n+ timeout: 30\n
"}, {"location": "user/migration-guide/v5-v6/", "title": "Migrate from V5 to V6", "text": ""}, {"location": "user/migration-guide/v5-v6/#deploy-multiple-pipelines", "title": "Deploy multiple pipelines", "text": "KPOps can now deploy multiple pipelines in a single command. It is possible to pass one or many pipeline.yaml files or pass a directory with many pipeline.yaml files within it.
The environment variable KPOPS_PIPELINE_PATH
is changed to KPOPS_PIPELINE_PATHS
.
Read more:
KPops Python API is now stable and separated from the CLI! \ud83c\udf89
"}, {"location": "user/references/cli-commands/", "title": "CLI Usage", "text": "Usage:
$ kpops [OPTIONS] COMMAND [ARGS]...\n
Options:
-V, --version
: Print KPOps version--install-completion
: Install completion for the current shell.--show-completion
: Show completion for the current shell, to copy it or customize the installation.--help
: Show this message and exit.Commands:
clean
: Clean pipeline stepsdeploy
: Deploy pipeline stepsdestroy
: Destroy pipeline stepsgenerate
: Generate enriched pipeline representationinit
: Initialize a new KPOps project.manifest
: Render final resource representationreset
: Reset pipeline stepsschema
: Generate JSON schema.kpops clean
", "text": "Clean pipeline steps
Usage:
$ kpops clean [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops deploy
", "text": "Deploy pipeline steps
Usage:
$ kpops deploy [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops destroy
", "text": "Destroy pipeline steps
Usage:
$ kpops destroy [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops generate
", "text": "Enrich pipeline steps with defaults. The enriched pipeline is used for all KPOps operations (deploy, destroy, ...).
Usage:
$ kpops generate [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--help
: Show this message and exit.kpops init
", "text": "Initialize a new KPOps project.
Usage:
$ kpops init [OPTIONS] PATH\n
Arguments:
PATH
: Path for a new KPOps project. It should lead to an empty (or non-existent) directory. The part of the path that doesn't exist will be created. [required]Options:
--config-include-opt / --no-config-include-opt
: Whether to include non-required settings in the generated 'config.yaml' [default: no-config-include-opt]--help
: Show this message and exit.kpops manifest
", "text": "In addition to generate, render final resource representation for each pipeline step, e.g. Kubernetes manifests.
Usage:
$ kpops manifest [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--help
: Show this message and exit.kpops reset
", "text": "Reset pipeline steps
Usage:
$ kpops reset [OPTIONS] PIPELINE_PATHS...\n
Arguments:
PIPELINE_PATHS...
: Paths to dir containing 'pipeline.yaml' or files named 'pipeline.yaml'. [env var: KPOPS_PIPELINE_PATHS;required]Options:
--dotenv FILE
: Path to dotenv file. Multiple files can be provided. The files will be loaded in order, with each file overriding the previous one. [env var: KPOPS_DOTENV_PATH]--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--steps TEXT
: Comma separated list of steps to apply the command on [env var: KPOPS_PIPELINE_STEPS]--filter-type [include|exclude]
: Whether the --steps option should include/exclude the steps [default: FilterType.INCLUDE]--environment TEXT
: The environment you want to generate and deploy the pipeline to. Suffix your environment files with this value (e.g. defaults_development.yaml for environment=development). [env var: KPOPS_ENVIRONMENT]--dry-run / --execute
: Whether to dry run the command or execute it [default: dry-run]--verbose / --no-verbose
: Enable verbose printing [default: no-verbose]--parallel / --no-parallel
: Enable or disable parallel execution of pipeline steps. If enabled, multiple steps can be processed concurrently. If disabled, steps will be processed sequentially. [default: no-parallel]--help
: Show this message and exit.kpops schema
", "text": "Generate JSON schema.
The schemas can be used to enable support for KPOps files in a text editor.
Usage:
$ kpops schema [OPTIONS] SCOPE:{pipeline|defaults|config}\n
Arguments:
SCOPE:{pipeline|defaults|config}
: Scope of the generated schemapipeline: Schema of PipelineComponents. Includes the built-in KPOps components by default. To include custom components, provide components module in config.\n\nconfig: Schema of KpopsConfig. [required]\n
Options:
--config DIRECTORY
: Path to the dir containing config.yaml files [env var: KPOPS_CONFIG_PATH; default: .]--include-stock-components / --no-include-stock-components
: Include the built-in KPOps components. [default: include-stock-components]--help
: Show this message and exit.We are working towards first-class editor support by providing plugins that work out of the box.
settings.json
{\n \"yaml.schemas\": {\n \"https://bakdata.github.io/kpops/4.0/schema/pipeline.json\": [\n \"pipeline.yaml\",\n \"pipeline_*.yaml\"\n ],\n \"https://bakdata.github.io/kpops/4.0/schema/defaults.json\": [\n \"defaults.yaml\",\n \"defaults_*.yaml\"\n ],\n \"https://bakdata.github.io/kpops/4.0/schema/config.json\": [\n \"config.yaml\",\n \"config_*.yaml\"\n ]\n }\n}\n
Advanced usage
It is possible to generate schemas with the kpops schema
command. Useful for including custom components or when using a pre-release version of KPOps.
KPOps provides JSON schemas that enable autocompletion and validation for all YAML files that the user must work with.
"}, {"location": "user/references/editor-integration/#supported-files", "title": "Supported files", "text": "pipeline.yaml
defaults.yaml
config.yaml
We provided a GitHub composite action bakdata/kpops
that installs and executes KPOps commands with the given parameters.
steps:\n # ...\n # This step is useful for debugging reasons\n - name: Generate Kafka pipeline\n uses: bakdata/kpops@main\n with:\n command: generate\n working-directory: home/my-kpops-root-dir\n pipeline: pipelines/my-pipeline-file.yaml\n kpops-version: 1.2.3\n\n # It is possible to use a pre-release KPOps version from TestPyPI https://test.pypi.org/project/kpops/#history\n - name: Deploy Kafka pipeline\n uses: bakdata/kpops@main\n with:\n command: deploy --execute\n working-directory: home/my-kpops-root-dir\n pipeline: pipelines/my-pipeline-file.yaml\n kpops-version: 1.2.5.dev20230707132709\n # ...\n
"}]}
\ No newline at end of file
diff --git a/main/sitemap.xml b/main/sitemap.xml
index 311f4276e..1dea575e5 100644
--- a/main/sitemap.xml
+++ b/main/sitemap.xml
@@ -2,202 +2,202 @@
Update Ruff - #475
@@ -4400,7 +4463,7 @@from.components.<component-name>.type
to input - #473Add support for Python 3.12 - #467
@@ -4482,7 +4545,7 @@Update docs of word-count example for v3 & new folder structure - #423
@@ -4593,7 +4656,7 @@Update pydantic dependency - #422
@@ -4703,7 +4766,7 @@Migrate deprecated mkdocs-material-extensions - #378
@@ -4771,7 +4834,7 @@Add version dropdown to the documentation - #336
@@ -4902,7 +4965,7 @@Add KPOps Runner GitHub Action to the documentation - #325
@@ -4921,7 +4984,7 @@Modularize and autogenerate examples for the documentation - #267
@@ -4957,7 +5020,7 @@Update Black - #294
@@ -5000,7 +5063,7 @@Update codeowners - #281
@@ -5020,7 +5083,7 @@Create workflow to lint CI - #260