This repository has been archived by the owner on May 24, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PM_SETTINGS.m
82 lines (71 loc) · 2.53 KB
/
PM_SETTINGS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function SETTINGS = PM_SETTINGS()
%% File locations.
SETTINGS.path = '/homes/jessica_yu/PRJ_PeptideModel/';
SETTINGS.dataFile = 'Data/PM_DataSets.xlsx';
SETTINGS.dictFile = 'Data/PM_Dictionaries.xlsx';
SETTINGS.vectMat = 'Results/PM_Vectorizations';
SETTINGS.dictMat = 'Results/PM_Dictionaries';
SETTINGS.dataMat = 'Results/PM_Data';
SETTINGS.resultsMat = 'Results/PM_Results';
SETTINGS.analysisMat = 'Results/PM_Analysis';
SETTINGS.valMat = 'Results/PM_Validation';
SETTINGS.plotSave = 'Plots/PM_PLOT_';
SETTINGS.figSave = 'Figures/PM_FIG_';
SETTINGS.txtSave = 'Results/PM_';
SETTINGS.d3Save = 'Results/D3/PM_';
%% Data properties.
SETTINGS.nFeats = 13*8;
SETTINGS.vectLengths = [8 13];
SETTINGS.numVects = [(2^8 - 1) (2^13 - 1)];
SETTINGS.receptors = {'STE2', 'HF10', 'PROM6', 'PROM7', 'MUT1', 'PROM3', 'TBBI2'};
SETTINGS.nReceps = length(SETTINGS.receptors);
SETTINGS.responses = {'EC50', 'EC50_log', 'EC50_inv', 'EC10', 'EC10_log', ...
'EC10_inv', 'UM10', 'UM10_log', 'UM10_inv'};
%% Regression settings.
SETTINGS.comp = 5;
SETTINGS.map = reshape(1:104,13,[])';
SETTINGS.groups = {'P', 'R'};
%% Analysis settings.
SETTINGS.q2_cutoff = 0.25;
SETTINGS.q2_scaled_cutoff = 0.75;
%% Validation settings.
SETTINGS.threshold = 0.5;
%% Plot labeling.
SETTINGS.response_names = {'EC50','log(EC50)','inv(EC50)','EC10', ...
'log(EC10)','inv(EC10)','UM10','log(UM10)','inv(UM10)'};
SETTINGS.group_names = {'Property', 'Residue'};
SETTINGS.group_labels = {{'P1','P2','P3','P4','P5','P6','P7','P8'};
{'R1','R2','R3','R4','R5','R6','R7','R8','R9','R10','R11','R12','R13'}};
SETTINGS.scan = {'A','Y','D','K'};
SETTINGS.alpha = 'WHWLQLKPGQPMY';
for iGroup = 1:2
for iRecep = 1:SETTINGS.nReceps
SETTINGS.legend{(iGroup - 1)*SETTINGS.nReceps + iRecep} = ...
[SETTINGS.groups{iGroup} ' - ' SETTINGS.receptors{iRecep}];
end
end
%% Plot styling.
cG = [0.4660 0.6740 0.1880];
cR = [0.6350 0.0780 0.1840];
cB = [0 0.4470 0.7410];
cP = [ 71 46 138]/255;
cO = [255 156 68]/255;
c1 = [ 33 120 99]/255;
c2 = [240 136 136]/255;
c3 = [ 0 163 189]/255;
c4 = [238 197 78]/255;
SETTINGS.recep_colors = [cG; cR; cB; c1; c2; c3; c4];
SETTINGS.group_styles = {'-', ':'};
SETTINGS.group_colors = [cP; cO];
%% Novel data.
SETTINGS.novel_names = {'alpha','A','B','C','D','E','F','G','H'};
SETTINGS.novel_seqs = {'WHWLQLKPGQPMY'
'LHLLALKPGQPMY'
'WHWLQLKPGEPLYGR'
'LHLLALKPGQPLYGR'
'LHLLAGQPGESLYGR'
'-HALALKPGEPMY'
'--ALALKPGEPMY'
'YHADQLKPGQPKY'
'VHDLQLDPGQPLY'};
end