forked from facebookresearch/deepmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevalPerImage.lua
201 lines (173 loc) · 6.42 KB
/
evalPerImage.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
Full scene evaluation of DeepMask/SharpMask
------------------------------------------------------------------------------]]
require 'torch'
require 'cutorch'
require 'image'
local cjson = require 'cjson'
local tds = require 'tds'
local coco = require 'coco'
paths.dofile('DeepMask.lua')
paths.dofile('SharpMask.lua')
--------------------------------------------------------------------------------
-- parse arguments
local cmd = torch.CmdLine()
cmd:text()
cmd:text('full scene evaluation of DeepMask/SharpMask')
cmd:text()
cmd:argument('-model', 'model to load')
cmd:text('Options:')
cmd:option('-datadir', 'data/', 'data directory')
cmd:option('-seed', 1, 'manually set RNG seed')
cmd:option('-gpu', 1, 'gpu device')
cmd:option('-split', 'val', 'dataset split to be used (train/val)')
cmd:option('-np', 500,'number of proposals')
cmd:option('-thr', .2, 'mask binary threshold')
cmd:option('-save', false, 'save top proposals')
cmd:option('-startAt', 1, 'start image id')
cmd:option('-endAt', 5000, 'end image id')
cmd:option('-smin', -2.5, 'min scale')
cmd:option('-smax', .5, 'max scale')
cmd:option('-sstep', .5, 'scale step')
cmd:option('-timer', false, 'breakdown timer')
cmd:option('-dm', false, 'use DeepMask version of SharpMask')
local config = cmd:parse(arg)
--------------------------------------------------------------------------------
-- various initializations
torch.setdefaulttensortype('torch.FloatTensor')
cutorch.setDevice(config.gpu)
torch.manualSeed(config.seed)
math.randomseed(config.seed)
local maskApi = coco.MaskApi
local meanstd = {mean={ 0.485, 0.456, 0.406 }, std={ 0.229, 0.224, 0.225 }}
--------------------------------------------------------------------------------
-- load model and config
print('| loading model file... ' .. config.model)
local m = torch.load(config.model..'/model.t7')
local c = m.config
for k,v in pairs(c) do if config[k] == nil then config[k] = v end end
local epoch = 0
if paths.filep(config.model..'/log') then
for line in io.lines(config.model..'/log') do
if string.find(line,'train') then epoch = epoch + 1 end
end
print(string.format('| number of examples seen until now: %d (%d epochs)',
epoch*config.maxload*config.batch,epoch))
end
local model = m.model
model:inference(config.np)
model:cuda()
--------------------------------------------------------------------------------
-- directory to save results
local savedir = string.format('%s/epoch=%d/',config.model,epoch)
print(string.format('| saving results results in %s',savedir))
os.execute(string.format('mkdir -p %s',savedir))
os.execute(string.format('mkdir -p %s/t7',savedir))
os.execute(string.format('mkdir -p %s/jsons',savedir))
if config.save then os.execute(string.format('mkdir -p %s/res',savedir)) end
--------------------------------------------------------------------------------
-- create inference module
local scales = {}
for i = config.smin,config.smax,config.sstep do table.insert(scales,2^i) end
if torch.type(model)=='nn.DeepMask' then
paths.dofile('InferDeepMask.lua')
elseif torch.type(model)=='nn.SharpMask' then
paths.dofile('InferSharpMask.lua')
end
local infer = Infer{
np = config.np,
scales = scales,
meanstd = meanstd,
model = model,
iSz = config.iSz,
dm = config.dm,
timer = config.timer,
}
--------------------------------------------------------------------------------
-- get list of eval images
local annFile = string.format('%s/annotations/instances_%s2014.json',
config.datadir,config.split)
local coco = coco.CocoApi(annFile)
local imgIds = coco:getImgIds()
imgIds,_ = imgIds:sort()
--------------------------------------------------------------------------------
-- function: encode proposals
local function encodeProps(props,np,img,k,masks,scores)
local t = (k-1)*np
local enc = maskApi.encode(masks)
for i = 1, np do
local elem = tds.Hash()
elem.segmentation = tds.Hash(enc[i])
elem.image_id=img.id
elem.category_id=1
elem.score=scores[i][1]
props[t+i] = elem
end
end
--------------------------------------------------------------------------------
-- function: convert props to json and save
local function saveProps(props,savedir,s,e)
--t7
local pathsvt7 = string.format('%s/t7/props-%d-%d.t7', savedir,s,e)
torch.save(pathsvt7,props)
--json
local pathsvjson = string.format('%s/jsons/props-%d-%d.json', savedir,s,e)
local propsjson = {}
for _,prop in pairs(props) do -- hash2table
local elem = {}
elem.category_id = prop.category_id
elem.image_id = prop.image_id
elem.score = prop.score
elem.segmentation={
size={prop.segmentation.size[1],prop.segmentation.size[2]},
counts = prop.segmentation.counts or prop.segmentation.count
}
table.insert(propsjson,elem)
end
local jsonText = cjson.encode(propsjson)
local f = io.open(pathsvjson,'w'); f:write(jsonText); f:close()
collectgarbage()
end
--------------------------------------------------------------------------------
-- function: read image
local function readImg(datadir,split,fileName)
local pathImg = string.format('%s/%s2014/%s',datadir,split,fileName)
local inp = image.load(pathImg,3)
return inp
end
--------------------------------------------------------------------------------
-- run
print('| start eval')
local props, svcount = tds.Hash(), config.startAt
for k = config.startAt,config.endAt do
xlua.progress(k,config.endAt)
-- load image
local img = coco:loadImgs(imgIds[k])[1]
local input = readImg(config.datadir,config.split,img.file_name)
local h,w = img.height,img.width
-- forward all scales
infer:forward(input)
-- get top proposals
local masks,scores = infer:getTopProps(config.thr,h,w)
-- encode proposals
encodeProps(props,config.np,img,k,masks,scores)
-- save top masks?
if config.save then
local res = input:clone()
maskApi.drawMasks(res, masks, 10)
image.save(string.format('%s/res/%d.jpg',savedir,k),res)
end
-- save proposals
if k%500 == 0 then
saveProps(props,savedir,svcount,k); props = tds.Hash(); collectgarbage()
svcount = svcount + 500
end
collectgarbage()
end
if config.timer then infer:printTiming() end
collectgarbage()
print('| finish')